p38 MAPK Activation Is Downstream of the Loss of Intercellular Adhesion in Pemphigus Vulgaris

被引:68
|
作者
Mao, Xuming
Sano, Yasuyo [1 ,2 ]
Park, Jin Mo [1 ,2 ]
Payne, Aimee S.
机构
[1] Massachusetts Gen Hosp, Cutaneous Biol Res Ctr, Charlestown, MA 02129 USA
[2] Harvard Univ, Sch Med, Charlestown, MA 02129 USA
基金
美国国家卫生研究院;
关键词
SCALDED-SKIN SYNDROME; BULLOUS IMPETIGO; SUBSTRATE-SPECIFICITY; PROTEIN-KINASES; DESMOGLEIN; AUTOANTIBODIES; IGG; P38MAPK; DISEASE; PHOSPHORYLATION;
D O I
10.1074/jbc.M110.172874
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pemphigus vulgaris (PV) is a potentially fatal blistering disease characterized by autoantibodies against the desmosomal adhesion protein desmoglein (Dsg) 3. Whether autoantibody steric hindrance or signaling through pathways such as p38 MAPK is primary in disease pathogenesis is controversial. PV mAbs that cause endocytosis of Dsg3 but do not dissociate keratinocytes because of compensatory adhesion by Dsg1 do not activate p38. The same mAbs plus exfoliative toxin to inactivate Dsg1 but not exfoliative toxin alone activate p38, suggesting that p38 activation is secondary to loss of adhesion. Mice with epidermal p38 alpha deficiency blister after passive transfer of PV mAbs; however, acantholytic cells retain cell surface Dsg3 compared with wild-type mice. In cultured keratinocytes, p38 knockdown prevents loss of desmosomal Dsg3 by PV mAbs, and exogenous p38 activation causes internalization of Dsg3, desmocollin 3, and desmoplakin. p38 alpha MAPK is therefore not required for the loss of intercellular adhesion in PV, but may function downstream to augment blistering via Dsg3 endocytosis. Treatments aimed at increasing keratinocyte adhesion could be used in conjunction with immunosuppressive agents, potentially leading to safer and more effective combination therapy regimens.
引用
收藏
页码:1283 / 1291
页数:9
相关论文
共 50 条
  • [21] p38γ and p38δ modulate innate immune response by regulating MEF2D activation
    Escos, Alejandra
    Diaz-Mora, Ester
    Pattison, Michael
    Fajardo, Pilar
    Gonzalez-Romero, Diego
    Risco, Ana
    Martin-Gomez, Jose
    Bonneil, Eric
    Sonenberg, Nahum
    Jafarnejad, Seyed Mehdi
    Sanz-Ezquerro, Juan Jose
    Ley, Steven C.
    Cuenda, Ana
    ELIFE, 2023, 12
  • [22] p38γ and p38δ Mitogen Activated Protein Kinases (MAPKs), New Stars in the MAPK Galaxy
    Escos, Alejandra
    Risco, Ana
    Alsina-Beauchamp, Dayanira
    Cuenda, Ana
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2016, 4
  • [23] Role of the p38 MAPK pathway in cisplatin-based therapy
    Javier Hernández Losa
    Carlos Parada Cobo
    Juan Guinea Viniegra
    Victor Javier Sánchez-Arevalo Lobo
    Santiago Ramón y Cajal
    Ricardo Sánchez-Prieto
    Oncogene, 2003, 22 : 3998 - 4006
  • [24] p38 MAPK: A Potential Target of Chronic Pain
    Lin, X.
    Wang, M.
    Zhang, J.
    Xu, R.
    CURRENT MEDICINAL CHEMISTRY, 2014, 21 (38) : 4405 - 4418
  • [25] Promoter methylation induced epigenetic silencing of DAZAP2, a downstream effector of p38/MAPK pathway, in multiple myeloma cells
    Li, Jiang
    Hu, Wei-Xin
    Luo, Sai-Qun
    Xiong, De-Hui
    Sun, Shuming
    Wang, Yan-Peng
    Bu, Xiu-Fen
    Liu, Jing
    Hu, Jingping
    CELLULAR SIGNALLING, 2019, 60 : 136 - 145
  • [26] Inhibition of Neuronal p38α, but not p38β MAPK, Provides Neuroprotection Against Three Different Neurotoxic Insults
    Bin Xing
    Adam D. Bachstetter
    Linda J. Van Eldik
    Journal of Molecular Neuroscience, 2015, 55 : 509 - 518
  • [27] Growth State-Dependent Activation of eNOS in Response to DHA: Involvement of p38 MAPK
    Huang, Shiqi
    Taylor, Carla G.
    Zahradka, Peter
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (09)
  • [28] Integrins play a critical role in mechanical stress-induced p38 MAPK activation
    Aikawa, R
    Nagai, T
    Kudoh, S
    Zou, YZ
    Tanaka, M
    Tamura, M
    Akazawa, H
    Takano, H
    Nagai, R
    Komuro, I
    HYPERTENSION, 2002, 39 (02) : 233 - 238
  • [29] Acetaldehyde induces tau phosphorylation via activation of p38 MAPK/JNK and ROS production
    Tingting Li
    Huahua Shi
    Yan Zhao
    Molecular & Cellular Toxicology, 2022, 18 : 311 - 320
  • [30] Inhibition of p38 MAPK in the brain through nasal administration of p38 inhibitor loaded in chitosan nanocapsules
    Casadome-Perales, Alvaro
    De Matteis, Laura
    Alleva, Maria
    Infantes-Rodriguez, Cristina
    Palomares-Perez, Irene
    Saito, Takashi
    Saido, Takaomi C.
    Esteban, Jose A.
    Nebreda, Angel R.
    de la Fuente, Jesus M.
    Dotti, Carlos G.
    NANOMEDICINE, 2019, 14 (18) : 2409 - 2422