Artificial Intelligence and Cellular Segmentation in Tissue Microscopy Images

被引:34
作者
Durkee, Madeleine S. [1 ,2 ]
Abraham, Rebecca [3 ,4 ,5 ]
Clark, Marcus R. [3 ,4 ,5 ]
Giger, Maryellen L. [1 ,2 ]
机构
[1] Univ Chicago, Dept Radiol, 5841 S Maryland Ave,MC2026, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Comm Med Phys, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[4] Univ Chicago, Sect Rheumatol, Chicago, IL 60637 USA
[5] Univ Chicago, Gwen Knapp Ctr Lupus & Immunol Res, Chicago, IL 60637 USA
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
BIAS;
D O I
10.1016/j.ajpath.2021.05.022
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
With applications in object detection, image feature extraction, image classification, and image segmentation, artificial intelligence is facilitating high-throughput analysis of image data in a variety of biomedical imaging disciplines, ranging from radiology and pathology to cancer biology and immunology. Specifically, a growth in research on deep learning has led to the widespread application of computer-visualization techniques for analyzing and mining data from biomedical images. The availability of open-source software packages and the development of novel, trainable deep neural network architectures has led to increased accuracy in cell detection and segmentation algorithms. By automating cell segmentation, it is now possible to mine quantifiable cellular and spatio-cellular features from microscopy images, providing insight into the organization of cells in various pathologies. This mini-review provides an overview of the current state of the art in deep learning- and artificial intelligence-based methods of segmentation and data mining of cells in microscopy images of tissue. (Am J Pathol 2021, 191: 1693-1701; https://doi.org/10.1016/ j.ajpath.2021.05.022)
引用
收藏
页码:1693 / 1701
页数:9
相关论文
共 49 条
  • [1] [Anonymous], 2018, Digital Medicine, DOI [10.4103/digm.digm_16_18, DOI 10.4103/DIGM.DIGM_16_18, DOI 10.4103/DIGM.DIGMTEXTUNDERSCORE16-TEXTUNDERSCORE18]
  • [2] Bancroft JD., 2008, THEORY PRACTICE HIST, V6, DOI DOI 10.1016/C2015-0-00143-5
  • [3] QuPath: Open source software for digital pathology image analysis
    Bankhead, Peter
    Loughrey, Maurice B.
    Fernandez, Jose A.
    Dombrowski, Yvonne
    Mcart, Darragh G.
    Dunne, Philip D.
    McQuaid, Stephen
    Gray, Ronan T.
    Murray, Liam J.
    Coleman, Helen G.
    James, Jacqueline A.
    Salto-Tellez, Manuel
    Hamilton, Peter W.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [4] Digital radiography. A comparison with modern conventional imaging
    Bansal, G. J.
    [J]. POSTGRADUATE MEDICAL JOURNAL, 2006, 82 (969) : 425 - 428
  • [5] Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology
    Bera, Kaustav
    Schalper, Kurt A.
    Rimm, David L.
    Velcheti, Vamsidhar
    Madabhushi, Anant
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) : 703 - 715
  • [6] ilastik: interactive machine learning for (bio) image analysis
    Berg, Stuart
    Kutra, Dominik
    Kroeger, Thorben
    Straehle, Christoph N.
    Kausler, Bernhard X.
    Haubold, Carsten
    Schiegg, Martin
    Ales, Janez
    Beier, Thorsten
    Rudy, Markus
    Eren, Kemal
    Cervantes, Jaime I.
    Xu, Buote
    Beuttenmueller, Fynn
    Wolny, Adrian
    Zhang, Chong
    Koethe, Ullrich
    Hamprecht, Fred A.
    Kreshuk, Anna
    [J]. NATURE METHODS, 2019, 16 (12) : 1226 - 1232
  • [7] Altered cytoplasmic-to-nuclear ratio of survivin is a prognostic indicator in breast cancer
    Brennan, Donal J.
    Rexhepaj, Elton
    O'Brien, Sallyann L.
    McSherry, Elaine
    O'Connor, Darran P.
    Fagan, Ailis
    Culhane, Aedin C.
    Higgins, Desmond G.
    Jirstrom, Karin
    Millikan, Robert C.
    Landberg, Goran
    Duffy, Michael J.
    Hewitt, Stephen M.
    Gallaghe, William M.
    [J]. CLINICAL CANCER RESEARCH, 2008, 14 (09) : 2681 - 2689
  • [8] CellProfiler: image analysis software for identifying and quantifying cell phenotypes
    Carpenter, Anne E.
    Jones, Thouis Ray
    Lamprecht, Michael R.
    Clarke, Colin
    Kang, In Han
    Friman, Ola
    Guertin, David A.
    Chang, Joo Han
    Lindquist, Robert A.
    Moffat, Jason
    Golland, Polina
    Sabatini, David M.
    [J]. GENOME BIOLOGY, 2006, 7 (10)
  • [9] Chen T, 2020, ARXIV
  • [10] Digital Pathology: Data-Intensive Frontier in Medical Imaging
    Cooper, Lee A. D.
    Carter, Alexis B.
    Farris, Alton B.
    Wang, Fusheng
    Kong, Jun
    Gutman, David A.
    Widener, Patrick
    Pan, Tony C.
    Cholleti, Sharath R.
    Sharma, Ashish
    Kurc, Tahsin M.
    Brat, Daniel J.
    Saltz, Joel H.
    [J]. PROCEEDINGS OF THE IEEE, 2012, 100 (04) : 991 - 1003