Excellent Performances of Composite Polymer Electrolytes with Porous Vinyl-Functionalized SiO2 Nanoparticles for Lithium Metal Batteries

被引:26
作者
Zhan, Hui [1 ]
Wu, Mengjun [1 ]
Wang, Rui [1 ]
Wu, Shuohao [1 ]
Li, Hao [1 ]
Tian, Tian [1 ,2 ]
Tang, Haolin [1 ,2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] WHUT Xianhu Hydrogen Valley, Guangdong Hydrogen Energy Inst, Foshan 528200, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium batteries; composite polymer electrolytes; chemical grafting; porous nanoparticles; cross-linking polymerization; silane coupling; HIGH ELECTROCHEMICAL STABILITY; HIGH IONIC-CONDUCTIVITY; MESOPOROUS SILICA; WINDOW;
D O I
10.3390/polym13152468
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Composite polymer electrolytes (CPEs) incorporate the advantages of solid polymer electrolytes (SPEs) and inorganic solid electrolytes (ISEs), which have shown huge potential in the application of safe lithium-metal batteries (LMBs). Effectively avoiding the agglomeration of inorganic fillers in the polymer matrix during the organic-inorganic mixing process is very important for the properties of the composite electrolyte. Herein, a partial cross-linked PEO-based CPE was prepared by porous vinyl-functionalized silicon (p-V-SiO2) nanoparticles as fillers and poly (ethylene glycol diacrylate) (PEGDA) as cross-linkers. By combining the mechanical rigidity of ceramic fillers and the flexibility of PEO, the as-made electrolyte membranes had excellent mechanical properties. The big special surface area and pore volume of nanoparticles inhibited PEO recrystallization and promoted the dissolution of lithium salt. Chemical bonding improved the interfacial compatibility between organic and inorganic materials and facilitated the homogenization of lithium-ion flow. As a result, the symmetric Li|CPE|Li cells could operate stably over 450 h without a short circuit. All solid Li|LiFePO4 batteries were constructed with this composite electrolyte and showed excellent rate and cycling performances. The first discharge-specific capacity of the assembled battery was 155.1 mA h g(-1), and the capacity retention was 91% after operating for 300 cycles at 0.5 C. These results demonstrated that the chemical grafting of porous inorganic materials and cross-linking polymerization can greatly improve the properties of CPEs.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Composite polyether electrolytes with Lewis acid type additives [J].
Borkowska, R ;
Reda, A ;
Zalewska, A ;
Wieczorek, W .
ELECTROCHIMICA ACTA, 2001, 46 (10-11) :1737-1746
[2]   Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach [J].
Chen, Ru-Jun ;
Zhang, Yi-Bo ;
Liu, Ting ;
Xu, Bing-Qing ;
Lin, Yuan-Hua ;
Nan, Ce-Wen ;
Shen, Yang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (11) :9654-9661
[3]   One-Dimensional Porous Silicon Nanowires with Large Surface Area for Fast Charge-Discharge Lithium-Ion Batteries [J].
Chen, Xu ;
Bi, Qinsong ;
Sajjad, Muhammad ;
Wang, Xu ;
Ren, Yang ;
Zhou, Xiaowei ;
Xu, Wen ;
Liu, Zhu .
NANOMATERIALS, 2018, 8 (05)
[4]   A Poly(ethylene oxide)/Lithium bis(trifluoromethanesulfonyl)imide-Coated Polypropylene Membrane for a High-Loading Lithium-Sulfur Battery [J].
Chiu, Li-Ling ;
Chung, Sheng-Heng .
POLYMERS, 2021, 13 (04) :1-10
[5]   Solid-state polymer electrolytes for high-performance lithium metal batteries [J].
Choudhury, Snehashis ;
Stalin, Sanjuna ;
Vu, Duylinh ;
Warren, Alexander ;
Deng, Yue ;
Biswal, Prayag ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li [J].
Chu, PP ;
Reddy, MJ ;
Kao, HM .
SOLID STATE IONICS, 2003, 156 (1-2) :141-153
[7]   Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes [J].
Croce, F ;
Persi, L ;
Scrosati, B ;
Serraino-Fiory, F ;
Plichta, E ;
Hendrickson, MA .
ELECTROCHIMICA ACTA, 2001, 46 (16) :2457-2461
[8]   Solid Polymer Electrolytes with Flexible Framework of SiO2Nanofibers for Highly Safe Solid Lithium Batteries [J].
Cui, Jin ;
Zhou, Zehao ;
Jia, Mengyang ;
Chen, Xin ;
Shi, Chuan ;
Zhao, Ning ;
Guo, Xiangxin .
POLYMERS, 2020, 12 (06)
[9]   High Performance Composite Polymer Electrolytes for Lithium-Ion Batteries [J].
Fan, Peng ;
Liu, Hao ;
Marosz, Vladimir ;
Samuels, Nia T. ;
Suib, Steven L. ;
Sun, Luyi ;
Liao, Libing .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (23)
[10]   Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors [J].
Han, Jae Hee ;
Lee, Jang Yong ;
Suh, Dong Hack ;
Hong, Young Taik ;
Kim, Tae-Ho .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (39) :33913-33924