Integration on a convex polytope

被引:57
作者
Lasserre, JB [1 ]
机构
[1] CNRS, LAAS, F-31077 Toulouse 4, France
关键词
numerical integration in R-n; homogeneous functions; convex polytopes;
D O I
10.1090/S0002-9939-98-04454-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an exact formula for integrating a (positively) homogeneous function f on a convex polytope Omega subset of R-n. We show that it suffices to integrate the function on the (n - 1)-dimensional faces of Omega, thus reducing the computational burden. Further properties are derived when f has continuous higher order derivatives. This result can be used to integrate a continuous function after approximation via a polynomial.
引用
收藏
页码:2433 / 2441
页数:9
相关论文
共 6 条
[1]   COMPUTING THE VOLUME, COUNTING INTEGRAL POINTS, AND EXPONENTIAL-SUMS [J].
BARVINOK, AI .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 10 (02) :123-141
[2]  
Beeler B., 1996, 12 EUR WORKSH COMP G
[3]  
BRION M, 1988, ANN SCI ECOLE NORM S, V21, P653
[4]  
GAGNAC G, 1970, ANALYSE
[6]  
Taylor M. E., 1996, PARTIAL DIFFERENTIAL