共 161 条
Developmental cognitive neuroscience using latent change score models: A tutorial and applications
被引:340
作者:
Kievit, Rogier A.
[1
,2
]
Brandmaier, Andreas M.
[1
,3
]
Ziegler, Gabriel
[4
,5
]
van Harmelen, Anne-Laura
[6
]
de Mooij, Susanne M. M.
[7
]
Moutoussis, Michael
[1
,8
]
Goodyer, Ian M.
[6
]
Bullmore, Ed
[6
,9
,10
,11
]
Jones, Peter B.
[6
,9
]
Fonagy, Peter
[12
]
Lindenberger, Ulman
[1
,3
,13
]
Dolan, Raymond J.
[1
,8
]
机构:
[1] Max Planck Ctr Computat Psychiat & Ageing Res, London Berlin, Germany
[2] Univ Cambridge, MRC, Cognit & Brain Sci Unit, 15 Chaucer Rd, Cambridge CB2 7EF, England
[3] Max Planck Inst Human Dev, Ctr Lifespan Psychol, Berlin, Germany
[4] Otto von Guericke Univ, Inst Cognit Neurol & Dementia Res, Magdeburg, Germany
[5] German Ctr Neurodegenerat Dis DZNE, Magdeburg, Germany
[6] Univ Cambridge, Dept Psychiat, Cambridge, England
[7] Univ Amsterdam, Dept Psychol Methods, Amsterdam, Netherlands
[8] UCL, Wellcome Ctr Human Neuroimaging, London WC1N 3BG, England
[9] Cambridgeshire & Peterborough Natl Hlth Serv Fdn, Cambridge CB21 5EF, England
[10] GlaxoSmithKline Res & Dev Ltd, ImmunoPsychiat, Stevenage SG1 2NY, Herts, England
[11] Univ Cambridge, Med Res Council, Wellcome Trust Behav & Clin Neurosci Inst, Cambridge, England
[12] UCL, Res Dept Clin Educ & Hlth Psychol, London, England
[13] European Univ Inst, Fiesole, FI, Italy
基金:
英国惠康基金;
英国医学研究理事会;
欧盟地平线“2020”;
关键词:
Latent change scores;
Longitudinal modelling;
Development;
Individual differences;
Structural equation modelling;
Adolescence;
WHITE-MATTER MICROSTRUCTURE;
LIKELIHOOD RATIO TEST;
GROWTH CURVE MODELS;
MAXIMUM-LIKELIHOOD;
INDIVIDUAL-DIFFERENCES;
MEASUREMENT INVARIANCE;
FACTORIAL INVARIANCE;
LONGITUDINAL DATA;
BRAIN MATURATION;
PERCEPTUAL SPEED;
D O I:
10.1016/j.dcn.2017.11.007
中图分类号:
B844 [发展心理学(人类心理学)];
学科分类号:
040202 ;
摘要:
Assessing and analysing individual differences in change over time is of central scientific importance to developmental neuroscience. However, the literature is based largely on cross-sectional comparisons, which reflect a variety of influences and cannot directly represent change. We advocate using latent change score (LCS) models in longitudinal samples as a statistical framework to tease apart the complex processes underlying lifespan development in brain and behaviour using longitudinal data. LCS models provide a flexible framework that naturally accommodates key developmental questions as model parameters and can even be used, with some limitations, in cases with only two measurement occasions. We illustrate the use of LCS models with two empirical examples. In a lifespan cognitive training study (COGITO, N = 204 (N = 32 imaging) on two waves) we observe correlated change in brain and behaviour in the context of a high-intensity training intervention. In an adolescent development cohort (NSPN, N = 176, two waves) we find greater variability in cortical thinning in males than in females. To facilitate the adoption of LCS by the developmental community, we provide analysis code that can be adapted by other researchers and basic primers in two freely available SEM software packages (lavaan and Omega nyx).
引用
收藏
页码:99 / 117
页数:19
相关论文