From the printer: Potential of three-dimensional printing for orthopaedic applications

被引:58
作者
Mok, Sze-Wing [1 ,2 ]
Nizak, Razmara [3 ]
Fu, Sai-Chuen [1 ,2 ]
Ho, Ki-Wai Kevin [1 ,2 ]
Qin, Ling [1 ,2 ]
Saris, Daniel B. F. [3 ,4 ]
Chan, Kai-Ming [1 ,2 ]
Malda, Jos [3 ,5 ]
机构
[1] Chinese Univ Hong Kong, Dept Orthopaed & Traumatol, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Lui Che Woo Inst Innovat Med, Hong Kong, Hong Kong, Peoples R China
[3] Univ Med Ctr Utrecht, Dept Orthopaed, Utrecht, Netherlands
[4] Univ Twente, Dept Tissue Regenerat, MIRA Inst Biomed Technol & Tech Med, Enschede, Netherlands
[5] Univ Utrecht, Dept Equine Sci, Utrecht, Netherlands
关键词
3D printing; biofabrication; orthopaedics; regenerative medicine; IN-VIVO; PHYTOMOLECULE ICARITIN; REGENERATIVE MEDICINE; ARTICULAR-CARTILAGE; TISSUE; SCAFFOLDS; HYDROGELS; BIOFABRICATION; CHONDROCYTES; ENHANCEMENT;
D O I
10.1016/j.jot.2016.04.003
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Three-dimensional (3D) printers can create complex structures based on digital models. The combination of medical diagnostic imaging with 3D printing has great potential in day-to-day clinics for patient-specific solutions and applications. In the musculoskeletal system, 3D printing is used to create custom-made implants, patient-specific instrumentation, and to regenerate tissues, in particular bone and cartilage. The major limiting factors for bioprinting include the lack of printing techniques with optimal printing resolution and materials with ideal mechanical strengths while maintaining cellular functionality. Before "tissues from the printer" can be widely applied, further research and development on improving and optimising printing techniques and biomaterials, and knowledge on the development of printed constructs into living tissues, is essential for future clinical application of this technology. (C) 2016 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:42 / 49
页数:8
相关论文
共 56 条
[21]   Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells [J].
Gao, Guifang ;
Schilling, Arndt F. ;
Yonezawa, Tomo ;
Wang, Jiang ;
Dai, Guohao ;
Cui, Xiaofeng .
BIOTECHNOLOGY JOURNAL, 2014, 9 (10) :1304-1311
[22]   Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation [J].
Goncalves, Elsa M. ;
Oliveira, Filipe J. ;
Silva, Rui F. ;
Neto, Miguel A. ;
Helena Fernandes, M. ;
Amaral, Margarida ;
Vallet-Regi, Maria ;
Vila, Mercedes .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2016, 104 (06) :1210-1219
[23]   Digital micromirror device projection printing system for meniscus tissue engineering [J].
Grogan, Shawn P. ;
Chung, Peter H. ;
Soman, Pranav ;
Chen, Peter ;
Lotz, Martin K. ;
Chen, Shaochen ;
D'Lima, Darryl D. .
ACTA BIOMATERIALIA, 2013, 9 (07) :7218-7226
[24]   Biofabrication: reappraising the definition of an evolving field [J].
Groll, Juergen ;
Boland, Thomas ;
Blunk, Torsten ;
Burdick, Jason A. ;
Cho, Dong-Woo ;
Dalton, Paul D. ;
Derby, Brian ;
Forgacs, Gabor ;
Li, Qing ;
Mironov, Vladimir A. ;
Moroni, Lorenzo ;
Nakamura, Makoto ;
Shu, Wenmiao ;
Takeuchi, Shoji ;
Vozzi, Giovanni ;
Woodfield, Tim B. F. ;
Xu, Tao ;
Yoo, James J. ;
Malda, Jos .
BIOFABRICATION, 2016, 8 (01)
[25]  
He HY, 2015, INT J CLIN EXP MED, V8, P11777
[26]   Three-dimensional printed calcaneal prosthesis following total calcanectomy [J].
Imanishi, Jungo ;
Choong, Peter F. M. .
INTERNATIONAL JOURNAL OF SURGERY CASE REPORTS, 2015, 10 :83-87
[27]   Bone regeneration in critical bone defects using three -dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2 [J].
Ishack, Stephanie ;
Mediero, Aranzazu ;
Wilder, Tuere ;
Ricci, John L. ;
Cronstein, Bruce N. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2017, 105 (02) :366-375
[28]   Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique [J].
Kai, He ;
Wang, Xinluan ;
Madhukar, Kumta Shekhar ;
Qin, Ling ;
Yan, Yongnian ;
Zhang, Renji ;
Wang, Xiaohong .
BIOFABRICATION, 2009, 1 (02)
[29]   In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds [J].
Kim, Tae-Hoon ;
Yun, Young-Pil ;
Park, Young-Eun ;
Lee, Suk-Ha ;
Yong, Woonjae ;
Kundu, Joydip ;
Jung, Jin Woo ;
Shim, Jin-Hyung ;
Cho, Dong-Woo ;
Kim, Sung Eun ;
Song, Hae-Ryong .
BIOMEDICAL MATERIALS, 2014, 9 (02)
[30]   Strategies for Zonal Cartilage Repair using Hydrogels [J].
Klein, Travis J. ;
Rizzi, Simone C. ;
Reichert, Johannes C. ;
Georgi, Nicole ;
Malda, Jos ;
Schuurman, Wouter ;
Crawford, Ross W. ;
Hutmacher, Dietmar W. .
MACROMOLECULAR BIOSCIENCE, 2009, 9 (11) :1049-1058