From the printer: Potential of three-dimensional printing for orthopaedic applications

被引:59
作者
Mok, Sze-Wing [1 ,2 ]
Nizak, Razmara [3 ]
Fu, Sai-Chuen [1 ,2 ]
Ho, Ki-Wai Kevin [1 ,2 ]
Qin, Ling [1 ,2 ]
Saris, Daniel B. F. [3 ,4 ]
Chan, Kai-Ming [1 ,2 ]
Malda, Jos [3 ,5 ]
机构
[1] Chinese Univ Hong Kong, Dept Orthopaed & Traumatol, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Lui Che Woo Inst Innovat Med, Hong Kong, Hong Kong, Peoples R China
[3] Univ Med Ctr Utrecht, Dept Orthopaed, Utrecht, Netherlands
[4] Univ Twente, Dept Tissue Regenerat, MIRA Inst Biomed Technol & Tech Med, Enschede, Netherlands
[5] Univ Utrecht, Dept Equine Sci, Utrecht, Netherlands
关键词
3D printing; biofabrication; orthopaedics; regenerative medicine; IN-VIVO; PHYTOMOLECULE ICARITIN; REGENERATIVE MEDICINE; ARTICULAR-CARTILAGE; TISSUE; SCAFFOLDS; HYDROGELS; BIOFABRICATION; CHONDROCYTES; ENHANCEMENT;
D O I
10.1016/j.jot.2016.04.003
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Three-dimensional (3D) printers can create complex structures based on digital models. The combination of medical diagnostic imaging with 3D printing has great potential in day-to-day clinics for patient-specific solutions and applications. In the musculoskeletal system, 3D printing is used to create custom-made implants, patient-specific instrumentation, and to regenerate tissues, in particular bone and cartilage. The major limiting factors for bioprinting include the lack of printing techniques with optimal printing resolution and materials with ideal mechanical strengths while maintaining cellular functionality. Before "tissues from the printer" can be widely applied, further research and development on improving and optimising printing techniques and biomaterials, and knowledge on the development of printed constructs into living tissues, is essential for future clinical application of this technology. (C) 2016 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:42 / 49
页数:8
相关论文
共 56 条
[11]   The influence of electrospun aligned poly(ε-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes [J].
Choi, Jin San ;
Lee, Sang Jin ;
Christ, George J. ;
Atala, Anthony ;
Yoo, James J. .
BIOMATERIALS, 2008, 29 (19) :2899-2906
[12]   Synthetically Simple, Highly Resilient Hydrogels [J].
Cui, Jun ;
Lackey, Melissa A. ;
Madkour, Ahmad E. ;
Saffer, Erika M. ;
Griffin, David M. ;
Bhatia, Surita R. ;
Crosby, Alfred J. ;
Tew, Gregory N. .
BIOMACROMOLECULES, 2012, 13 (03) :584-588
[13]   3D bioprinting of cartilage for orthopedic surgeons: reading between the lines [J].
Di Bella, Claudia ;
Fosang, Amanda ;
Donati, Davide M. ;
Wallace, Gordon G. ;
Choong, Peter F. M. .
FRONTIERS IN SURGERY, 2015, 2
[14]  
Elisseeff J, 2000, J BIOMED MATER RES, V51, P164, DOI 10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.3.CO
[15]  
2-N
[16]  
FDA, 2014, PUBL WORKSH ADD MAN
[17]   Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing [J].
Fedorovich, Natalja E. ;
Alblas, Jacqueline ;
de Wijn, Joost R. ;
Hennink, Wim E. ;
Verbout, Ab J. ;
Dhert, Wouter J. A. .
TISSUE ENGINEERING, 2007, 13 (08) :1905-1925
[18]  
Fedorovich NE, 2012, TISSUE ENG PART C-ME, V18, P33, DOI [10.1089/ten.tec.2011.0060, 10.1089/ten.TEC.2011.0060]
[19]   SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo [J].
Fielding, Gary ;
Bose, Susmita .
ACTA BIOMATERIALIA, 2013, 9 (11) :9137-9148
[20]   The Basic Science of Articular Cartilage: Structure, Composition, and Function [J].
Fox, Alice J. Sophia ;
Bedi, Asheesh ;
Rodeo, Scott A. .
SPORTS HEALTH-A MULTIDISCIPLINARY APPROACH, 2009, 1 (06) :461-468