From the printer: Potential of three-dimensional printing for orthopaedic applications

被引:58
作者
Mok, Sze-Wing [1 ,2 ]
Nizak, Razmara [3 ]
Fu, Sai-Chuen [1 ,2 ]
Ho, Ki-Wai Kevin [1 ,2 ]
Qin, Ling [1 ,2 ]
Saris, Daniel B. F. [3 ,4 ]
Chan, Kai-Ming [1 ,2 ]
Malda, Jos [3 ,5 ]
机构
[1] Chinese Univ Hong Kong, Dept Orthopaed & Traumatol, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Lui Che Woo Inst Innovat Med, Hong Kong, Hong Kong, Peoples R China
[3] Univ Med Ctr Utrecht, Dept Orthopaed, Utrecht, Netherlands
[4] Univ Twente, Dept Tissue Regenerat, MIRA Inst Biomed Technol & Tech Med, Enschede, Netherlands
[5] Univ Utrecht, Dept Equine Sci, Utrecht, Netherlands
关键词
3D printing; biofabrication; orthopaedics; regenerative medicine; IN-VIVO; PHYTOMOLECULE ICARITIN; REGENERATIVE MEDICINE; ARTICULAR-CARTILAGE; TISSUE; SCAFFOLDS; HYDROGELS; BIOFABRICATION; CHONDROCYTES; ENHANCEMENT;
D O I
10.1016/j.jot.2016.04.003
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Three-dimensional (3D) printers can create complex structures based on digital models. The combination of medical diagnostic imaging with 3D printing has great potential in day-to-day clinics for patient-specific solutions and applications. In the musculoskeletal system, 3D printing is used to create custom-made implants, patient-specific instrumentation, and to regenerate tissues, in particular bone and cartilage. The major limiting factors for bioprinting include the lack of printing techniques with optimal printing resolution and materials with ideal mechanical strengths while maintaining cellular functionality. Before "tissues from the printer" can be widely applied, further research and development on improving and optimising printing techniques and biomaterials, and knowledge on the development of printed constructs into living tissues, is essential for future clinical application of this technology. (C) 2016 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:42 / 49
页数:8
相关论文
共 56 条
[1]   Osteoinduction, osteoconduction and osseointegration [J].
Albrektsson, T ;
Johansson, C .
EUROPEAN SPINE JOURNAL, 2001, 10 (Suppl 2) :S96-S101
[2]  
[Anonymous], 2009, P RAPIDTECH 2009 US
[3]  
Bishop Alton, 2002, Dent Assist, V71, P14
[4]   Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels [J].
Bryant, SJ ;
Anseth, KS .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (01) :63-72
[5]   Tissue engineering of the meniscus [J].
Buma, P ;
Ramrattan, NN ;
van Tienen, TG ;
Veth, RPH .
BIOMATERIALS, 2004, 25 (09) :1523-1532
[6]   Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects [J].
Castilho, Miguel ;
Moseke, Claus ;
Ewald, Andrea ;
Gbureck, Uwe ;
Groll, Juergen ;
Pires, Ines ;
Tessmar, Joerg ;
Vorndran, Elke .
BIOFABRICATION, 2014, 6 (01)
[7]   PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits [J].
Chen, S. -H. ;
Lei, M. ;
Xie, X. -H. ;
Zheng, L. -Z. ;
Yao, D. ;
Wang, X. -L. ;
Li, W. ;
Zhao, Z. ;
Kong, A. ;
Xiao, D. -M. ;
Wang, D. -P. ;
Pan, X. -H. ;
Wang, Y. -X. ;
Qin, L. .
ACTA BIOMATERIALIA, 2013, 9 (05) :6711-6722
[8]   Comparative study of poly (lactic-co-glycolic acid)/tricalcium phosphate scaffolds incorporated or coated with osteogenic growth factors for enhancement of bone regeneration [J].
Chen, Shi-hui ;
Zheng, Li-zhen ;
Xie, Xin-hui ;
Wang, Xin-luan ;
Lai, Yu-xiao ;
Chen, Shu-kui ;
Zhang, Ming ;
Wang, Yi-xiang ;
Griffith, James F. ;
Qin, Ling .
JOURNAL OF ORTHOPAEDIC TRANSLATION, 2014, 2 (02) :91-104
[10]   Recent advances in 3D printing of biomaterials [J].
Chia, Helena N. ;
Wu, Benjamin M. .
JOURNAL OF BIOLOGICAL ENGINEERING, 2015, 9