Accurate Noncovalent Interactions via Dispersion-Corrected Second-Order Moller-Plesset Perturbation Theory

被引:45
作者
Rezac, Jan [1 ]
Greenwell, Chandler [2 ]
Beran, Gregory J. O. [2 ]
机构
[1] Czech Acad Sci, Inst Organ Chem & Biochem, Prague 16610, Czech Republic
[2] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
INTERACTION ENERGIES; D3; DISPERSION; DATABASE; BENCHMARKING; MODEL; LIMIT; S66; MP2;
D O I
10.1021/acs.jctc.8b00548
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Noncovalent interactions govern many important areas of chemistry, ranging from biomolecules to molecular crystals. Here, an accurate and computationally inexpensive dispersion-corrected second-order Moller-Plesset perturbation theory model (MP2D) is presented. MP2D recasts the highly successful dispersion-corrected MP2C model in a framework based on Grimme's D3 dispersion correction, combining Grimme's D3 dispersion coefficients with new analogous uncoupled Hartree-Fock ones and five global empirical parameters. MP2D is faster than MP2C, and unlike MP2C, it is suitable for geometry optimizations and can describe both intra- and intermolecular noncovalent interactions with high accuracy. MP2D approaches the accuracy of higher-level ab initio wave function techniques and out-performs a widely used hybrid dispersion-corrected density functional on a range of intermolecular, intramolecular, and thermochemical benchmarks.
引用
收藏
页码:4711 / 4721
页数:11
相关论文
共 55 条
[41]   Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications [J].
Rezac, Jan ;
Hobza, Pavel .
CHEMICAL REVIEWS, 2016, 116 (09) :5038-5071
[42]   Cuby: An Integrative Framework for Computational Chemistry [J].
Rezac, Jan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2016, 37 (13) :1230-1237
[43]   Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules [J].
Rezac, Jan ;
Riley, Kevin E. ;
Hobza, Pavel .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (11) :4285-4292
[44]   S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures [J].
Rezac, Jan ;
Riley, Kevin E. ;
Hobza, Pavel .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (08) :2427-2438
[45]   Stabilization and Structure Calculations for Noncovalent Interactions in Extended Molecular Systems Based on Wave Function and Density Functional Theories [J].
Riley, Kevin E. ;
Pitonak, Michel ;
Jurecka, Petr ;
Hobza, Pavel .
CHEMICAL REVIEWS, 2010, 110 (09) :5023-5063
[46]   Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes [J].
Risthaus, Tobias ;
Grimme, Stefan .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (03) :1580-1591
[47]   Empirical D3 Dispersion as a Replacement for ab lnitio Dispersion Terms in Density Functional Theory-Based Symmetry-Adapted Perturbation Theory [J].
Sedlak, Robert ;
Rezac, Jan .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (04) :1638-1646
[48]   MP2.5 and MP2.X: Approaching CCSD(T) Quality Description of Noncovalent Interaction at the Cost of a Single CCSD Iteration [J].
Sedlak, Robert ;
Riley, Kevin E. ;
Rezac, Jan ;
Pitonak, Michal ;
Hobza, Pavel .
CHEMPHYSCHEM, 2013, 14 (04) :698-707
[49]   Highly accurate coupled cluster potential energy curves for the benzene dimer: Sandwich, T-shaped, and parallel-displaced configurations [J].
Sinnokrot, MO ;
Sherrill, CD .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (46) :10200-10207
[50]   Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory [J].
Smith, Daniel G. A. ;
Burns, Lori A. ;
Patkowski, Konrad ;
Sherrill, C. David .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (12) :2197-2203