Accurate Noncovalent Interactions via Dispersion-Corrected Second-Order Moller-Plesset Perturbation Theory

被引:45
作者
Rezac, Jan [1 ]
Greenwell, Chandler [2 ]
Beran, Gregory J. O. [2 ]
机构
[1] Czech Acad Sci, Inst Organ Chem & Biochem, Prague 16610, Czech Republic
[2] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
INTERACTION ENERGIES; D3; DISPERSION; DATABASE; BENCHMARKING; MODEL; LIMIT; S66; MP2;
D O I
10.1021/acs.jctc.8b00548
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Noncovalent interactions govern many important areas of chemistry, ranging from biomolecules to molecular crystals. Here, an accurate and computationally inexpensive dispersion-corrected second-order Moller-Plesset perturbation theory model (MP2D) is presented. MP2D recasts the highly successful dispersion-corrected MP2C model in a framework based on Grimme's D3 dispersion correction, combining Grimme's D3 dispersion coefficients with new analogous uncoupled Hartree-Fock ones and five global empirical parameters. MP2D is faster than MP2C, and unlike MP2C, it is suitable for geometry optimizations and can describe both intra- and intermolecular noncovalent interactions with high accuracy. MP2D approaches the accuracy of higher-level ab initio wave function techniques and out-performs a widely used hybrid dispersion-corrected density functional on a range of intermolecular, intramolecular, and thermochemical benchmarks.
引用
收藏
页码:4711 / 4721
页数:11
相关论文
共 55 条
[1]  
[Anonymous], 2017, TURBOMOLE V7 2
[2]   Investigation of the benzene-dimer potential energy surface:: DFT/CCSD(T) correction scheme [J].
Bludsky, Ota ;
Rubes, Miroslav ;
Soldan, Pavel ;
Nachtigall, Petr .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (11)
[3]   The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions [J].
Burns, Lori A. ;
Faver, John C. ;
Zheng, Zheng ;
Marshall, Michael S. ;
Smith, Daniel G. A. ;
Vanommeslaeghe, Kenno ;
MacKerell, Alexander D., Jr. ;
Merz, Kenneth M., Jr. ;
Sherrill, C. David .
JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (16)
[4]   Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches [J].
Burns, Lori A. ;
Marshall, Michael S. ;
Sherrill, C. David .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (23)
[5]   Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals [J].
Burns, Lori A. ;
Vazquez-Mayagoitia, Alvaro ;
Sumpter, Bobby G. ;
Sherrill, C. David .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (08)
[6]   CALCULATIONS OF NONADDITIVE EFFECTS BY MEANS OF SUPERMOLECULAR MOLLER-PLESSET PERTURBATION-THEORY APPROACH - AR3 AND AR4 [J].
CHALASINSKI, G ;
SZCZESNIAK, MM ;
CYBULSKI, SM .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (04) :2481-2487
[7]   Challenges for Density Functional Theory [J].
Cohen, Aron J. ;
Mori-Sanchez, Paula ;
Yang, Weitao .
CHEMICAL REVIEWS, 2012, 112 (01) :289-320
[8]   In pursuit of the ab initio limit for conformational energy prototypes [J].
Császár, AG ;
Allen, WD ;
Schaefer, HF .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (23) :9751-9764
[9]   The origin of deficiency of the supermolecule second-order Moller-Plesset approach for evaluating interaction energies [J].
Cybulski, Slawomir M. ;
Lytle, Marion L. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (14)
[10]   Optimized spin-component scaled second-order Moller-Plesset perturbation theory for intermolecular interaction energies [J].
Distasio, Robert A., Jr. ;
Head-Gordon, Martin .
MOLECULAR PHYSICS, 2007, 105 (08) :1073-1083