A new method of kernel-smoothing estimation of the ROC curve

被引:9
|
作者
Pulit, Michal [1 ]
机构
[1] Wroclaw Univ Technol, Ul Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
ROC curve; Nonparametric estimation; Kernel smoothing; Bandwidth selection; BANDWIDTH SELECTION; TRANSFORMATION-INVARIANT;
D O I
10.1007/s00184-015-0569-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The receiver operating characteristic (ROC) curve is a popular graphical tool for describing the accuracy of a diagnostic test. Based on the idea of estimating the ROC curve as a distribution function, we propose a new kernel smoothing estimator of the ROC curve which is invariant under nondecreasing data transformations. We prove that the estimator has better asymptotic mean squared error properties than some other estimators involving kernel smoothing and we present an easy method of bandwidth selection. By simulation studies, we show that for the limited sample sizes, our proposed estimator is competitive with some other nonparametric estimators of the ROC curve. We also give an example of applying the estimator to a real data set.
引用
收藏
页码:603 / 634
页数:32
相关论文
共 50 条
  • [1] A new method of kernel-smoothing estimation of the ROC curve
    Michał Pulit
    Metrika, 2016, 79 : 603 - 634
  • [2] Optimization of functional diagnostic test: the effect of kernel method as an estimator of ROC curve
    Estevez-Perez, Graciela
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (09) : 1942 - 1964
  • [3] Smoothing Kernel Estimator for the ROC Curve-Simulation Comparative Study
    Mourao, Maria Filipa
    Braga, Ana C.
    Oliveira, Pedro Nuno
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, PT I, 2013, 7971 : 573 - 584
  • [4] Comparison of bandwidth selection methods for kernel smoothing of ROC curves
    Zhou, XH
    Harezlak, J
    STATISTICS IN MEDICINE, 2002, 21 (14) : 2045 - 2055
  • [5] ROC CURVE ESTIMATION: AN OVERVIEW
    Goncalves, Luzia
    Subtil, Ana
    Rosario Oliveira, M.
    Bermudez, Patricia De Zea
    REVSTAT-STATISTICAL JOURNAL, 2014, 12 (01) : 1 - 20
  • [6] A flexible method for estimating the ROC curve
    Ren, HB
    Zhou, XH
    Liang, H
    JOURNAL OF APPLIED STATISTICS, 2004, 31 (07) : 773 - 784
  • [7] Rank-based kernel estimation of the area under the ROC curve
    Yin, Jingjing
    Hao, Yi
    Samawi, Hani
    Rochani, Haresh
    STATISTICAL METHODOLOGY, 2016, 32 : 91 - 106
  • [8] Smooth ROC curve estimation via Bernstein polynomials
    Wang, Dongliang
    Cai, Xueya
    PLOS ONE, 2021, 16 (05):
  • [9] Smooth estimation of ROC curve in the presence of auxiliary information
    Zhou, Yong
    Zhou, Haibo
    Ma, Yunbei
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2011, 24 (05) : 919 - 944
  • [10] Minimum distance estimation of the binormal ROC curve
    Jokiel-Rokita, Alicja
    Topolnicki, Rafal
    STATISTICAL PAPERS, 2019, 60 (06) : 2161 - 2183