Insights Into Systemic Sclerosis from Gene Expression Profiling

被引:1
作者
Franks, Jennifer M. [1 ,2 ,3 ]
Whitfield, Michael L. [1 ,2 ,4 ,5 ]
机构
[1] Geisel Sch Med, Dept Biomed Data Sci, Lebanon, NH 03755 USA
[2] Geisel Sch Med, Ctr Quantitat Biol, Hanover, NH 03755 USA
[3] Univ Washington, Dept Genome Sci, Seattle, WA USA
[4] Geisel Sch Med, Dept Mol & Syst Biol, Hanover, NH 03755 USA
[5] Geisel Sch Med, Dept Biomed Data Sci, One Med Ctr Dr,HB 7261, Lebanon, NH 03756 USA
关键词
Gene expression; RNA-seq; DNA microarray; Genomics; Machine learning; Artificial intelligence; Systemic sclerosis; Systemic autoimmune disease; Biomarkers; Single-cell genomics; MOLECULAR SUBTYPES; PRECISION MEDICINE; CLINICAL-FEATURES; DISEASE; SCLERODERMA; SEVERITY; SURVIVAL; CELLS; MANIFESTATIONS; ASSOCIATIONS;
D O I
10.1007/s40674-021-00183-0
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review The emergence of genomic data science stands poised to revolutionize our molecular understanding of the heterogeneity of complex diseases including systemic autoimmune diseases. In systemic sclerosis (SSc), bulk and single-cell transcriptomics have provided a new lens into the heterogeneity of this complex condition, both in terms of molecular heterogeneity, treatment response, and cell types important for the disease. Recent findings Transcriptomics has revealed reproducible patterns of gene expression among SSc patients. These conserved patterns of gene expression provide insights into SSc etiology, and evidence suggests that these groups may have important implications for treatment decisions by targeting specific patients. Integration and analyses of publicly available data are providing new insights into the disease. Single-cell technologies are illuminating cell types that may be important in pathogenesis. The disease trajectory for SSc remains difficult to predict, but the interactions between adaptive and innate immune cells with tissue-resident stromal cells may play an important role. The heterogeneity in SSc can be broken down and quantified using molecular methods that range from bulk analysis to single cells. Further study of cellular and molecular dynamics in end-target tissues is likely to result in better disease management through personalized, data-driven treatment decisions.
引用
收藏
页码:208 / 221
页数:14
相关论文
共 92 条
[41]   Multiple linear regression [J].
Krzywinski, Martin ;
Altman, Naomi .
NATURE METHODS, 2015, 12 (12) :1103-1104
[42]   WGCNA: an R package for weighted correlation network analysis [J].
Langfelder, Peter ;
Horvath, Steve .
BMC BIOINFORMATICS, 2008, 9 (1)
[43]  
LEROY EC, 1988, J RHEUMATOL, V15, P202
[44]   Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia [J].
Ley, Timothy J. ;
Miller, Christopher ;
Ding, Li ;
Raphael, Benjamin J. ;
Mungall, Andrew J. ;
Robertson, A. Gordon ;
Hoadley, Katherine ;
Triche, Timothy J., Jr. ;
Laird, Peter W. ;
Baty, Jack D. ;
Fulton, Lucinda L. ;
Fulton, Robert ;
Heath, Sharon E. ;
Kalicki-Veizer, Joelle ;
Kandoth, Cyriac ;
Klco, Jeffery M. ;
Koboldt, Daniel C. ;
Kanchi, Krishna-Latha ;
Kulkarni, Shashikant ;
Lamprecht, Tamara L. ;
Larson, David E. ;
Lin, Ling ;
Lu, Charles ;
McLellan, Michael D. ;
McMichael, Joshua F. ;
Payton, Jacqueline ;
Schmidt, Heather ;
Spencer, David H. ;
Tomasson, Michael H. ;
Wallis, John W. ;
Wartman, Lukas D. ;
Watson, Mark A. ;
Welch, John ;
Wendl, Michael C. ;
Ally, Adrian ;
Balasundaram, Miruna ;
Birol, Inanc ;
Butterfield, Yaron ;
Chiu, Readman ;
Chu, Andy ;
Chuah, Eric ;
Chun, Hye-Jung ;
Corbett, Richard ;
Dhalla, Noreen ;
Guin, Ranabir ;
He, An ;
Hirst, Carrie ;
Hirst, Martin ;
Holt, Robert A. ;
Jones, Steven .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 368 (22) :2059-2074
[45]   Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity [J].
Lofgren, Shane ;
Hinchcliff, Monique ;
Carns, Mary ;
Wood, Tammara ;
Aren, Kathleen ;
Arroyo, Esperanza ;
Cheung, Peggie ;
Kuo, Alex ;
Valenzuela, Antonia ;
Haemel, Anna ;
Wolters, Paul J. ;
Gordon, Jessica ;
Spiera, Robert ;
Assassi, Shervin ;
Boin, Francesco ;
Chung, Lorinda ;
Fiorentino, David ;
Utz, Paul J. ;
Whitfield, Michael L. ;
Khatri, Purvesh .
JCI INSIGHT, 2016, 1 (21)
[46]   Systems Level Analysis of Systemic Sclerosis Shows a Network of Immune and Profibrotic Pathways Connected with Genetic Polymorphisms [J].
Mahoney, J. Matthew ;
Taroni, Jaclyn ;
Martyanov, Viktor ;
Wood, Tammara A. ;
Greene, Casey S. ;
Pioli, Patricia A. ;
Hinchcliff, Monique E. ;
Whitfield, Michael L. .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (01)
[47]   Molecular stratification and precision medicine in systemic sclerosis from genomic and proteomic data [J].
Martyanov, Viktor ;
Whitfield, Michael L. .
CURRENT OPINION IN RHEUMATOLOGY, 2016, 28 (01) :83-88
[48]   Clinical trials in systemic sclerosis: lessons learned and outcomes [J].
Matucci-Cerinic, Marco ;
Steen, Virginia D. ;
Furst, Daniel E. ;
Seibold, James R. .
ARTHRITIS RESEARCH & THERAPY, 2007, 9 (Suppl 2)
[49]   Natural history of systemic sclerosis and the assessment of disease activity, severity, functional status, and psychologic well-being [J].
Medsger, TA .
RHEUMATIC DISEASE CLINICS OF NORTH AMERICA, 2003, 29 (02) :255-+
[50]   Molecular Subsets in the Gene Expression Signatures of Scleroderma Skin [J].
Milano, Ausra ;
Pendergrass, Sarah A. ;
Sargent, Jennifer L. ;
George, Lacy K. ;
McCalmont, Timothy H. ;
Connolly, M. Kari ;
Whitfield, Michael L. .
PLOS ONE, 2008, 3 (07)