共 30 条
STRONG COMMUTATIVITY PRESERVING MAPS OF UPPER TRIANGULAR MATRIX LIE ALGEBRAS OVER A COMMUTATIVE RING
被引:3
|作者:
Chen, Zhengxin
[1
]
Zhao, Yu'e
[2
]
机构:
[1] Fujian Normal Univ, Sch Math & Stat, Fuzhou 350007, Peoples R China
[2] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Upper triangular matrix Lie algebras;
strong commutativity preserving maps;
extremal inner automorphisms;
idempotent scalar multiplications;
INVERTIBLE LINEAR-MAPS;
GENERALIZED DERIVATIONS;
COMMUTING TRACES;
AUTOMORPHISMS;
D O I:
10.4134/BKMS.b200770
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let R be a commutative ring with identity 1, n >= 3, and let T-n(R) be the linear Lie algebra of all upper triangular n x n matrices over R. A linear map phi on T-n(R) is called to be strong commutativity preserving if [phi(x), phi(y)] = [x, y] for any x, y is an element of T-n(R). We show that an invertible linear map phi preserves strong commutativity on T-n(R) if and only if it is a composition of an idempotent scalar multiplication, an extremal inner automorphism and a linear map induced by a linear function on T-n(R).
引用
收藏
页码:973 / 981
页数:9
相关论文