Performance estimation of a thin-film photovoltaic plant based on an Artificial Neural Network model

被引:0
作者
Graditi, Giorgio [1 ]
Ferlito, Sergio [1 ]
Adinolfi, Giovanna [1 ]
Tina, Giuseppe Marco [2 ]
Ventura, Cristina [2 ]
机构
[1] ENEA Res Ctr, Italian Natl Agcy New Technol Energy & Sustainabl, Piazza E Fermi 1, I-80055 Portici, NA, Italy
[2] Univ Catania, Dipartimento Ingn Elettr Elettron Informat, I-95125 Catania, Italy
来源
2014 5TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC) | 2014年
关键词
Artificial Neural Network; photovoltaic production; MLP; CONVERTERS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An Artificial Neural Network (ANN) approach is used to estimate power production yield by a 1 kW(p) experimental micro-morph silicon modules plant located at ENEA Portici Research Centre, in Italy South region. A large dataset consisting of data, measured every five minutes and acquired from 2006 to 2012, is used for the training/test of the ANN. First, AC power production evaluation is obtained from single-hidden layer Multi-Layer Perceptron (MPL) Neural Network with two inputs consisting in ambient temperature and solar global radiation. In order to improve the approximation of the AC power, the clear sky solar radiation is then added as input of the ANN. Experimental data are reported to demonstrate the feasibility and the potentiality of the adopted solutions.
引用
收藏
页数:6
相关论文
共 32 条
  • [1] Characterization and Testing of a Tool for Photovoltaic Panel Modeling
    Adamo, Francesco
    Attivissimo, Filippo
    Di Nisio, Attilio
    Spadavecchia, Maurizio
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (05) : 1613 - 1622
  • [2] Design of dc/dc Converters for DMPPT PV Applications Based on the Concept of Energetic Efficiency
    Adinolfi, G.
    Femia, N.
    Petrone, G.
    Spagnuolo, G.
    Vitelli, M.
    [J]. JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2010, 132 (02): : 0210051 - 02100510
  • [3] [Anonymous], 1983, INTRO SOLAR RAD
  • [4] [Anonymous], 2004, P 5 ISES EUR SOL C
  • [5] A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module
    Bonanno, F.
    Capizzi, G.
    Graditi, G.
    Napoli, C.
    Tina, G. M.
    [J]. APPLIED ENERGY, 2012, 97 : 956 - 961
  • [6] Catelani M., 2013, 12 IMEKO IT JUN, P254
  • [7] Celik B., 2013, RENEWABLE ENERGY, V60
  • [8] Diffuse solar irradiation model evaluation in the North Mediterranean belt area
    De Miguel, A
    Bilbao, J
    Aguiar, R
    Kambezidis, H
    Negro, E
    [J]. SOLAR ENERGY, 2001, 70 (02) : 143 - 153
  • [9] Modeling of hybrid renewable energy systems
    Deshmukh, M. K.
    Deshmukh, S. S.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2008, 12 (01) : 235 - 249
  • [10] Gilbert M.M., 2004, Renewable and efficient electric power systems