Bounded multi-soliton solutions and their asymptotic analysis for the reversal-time nonlocal nonlinear Schrodinger equation

被引:5
作者
Tang, Wei-Jing [1 ]
Hu, Zhang-nan [1 ]
Ling, Liming [1 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlocal nonlinear Schrodinger equation; multi-soliton solution; singularity; asymptotic analysis; BACKLUND TRANSFORMATION; INVERSE SCATTERING; SOLITONS;
D O I
10.1088/1572-9494/ac08fb
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we construct the Darboux transformation (DT) for the reverse-time integrable nonlocal nonlinear Schrodinger equation by loop group method. Then we utilize the DT to derive soliton solutions with zero seed. We investigate the dynamical properties for those solutions and present a sufficient condition for the non-singularity of multi-soliton solutions. Furthermore, the asymptotic analysis of bounded multi-solutions has also been established by the determinant formula.
引用
收藏
页数:13
相关论文
共 50 条
[41]   The deformed modified Korteweg–de Vries equation: Multi-soliton solutions and their interactions [J].
S Suresh Kumar .
Pramana, 97
[42]   Interaction theory of mirror-symmetry soliton pairs in nonlocal nonlinear Schrodinger equation [J].
Song, Li-Min ;
Yang, Zhen-Jun ;
Pang, Zhao-Guang ;
Li, Xing-Liang ;
Zhang, Shu-Min .
APPLIED MATHEMATICS LETTERS, 2019, 90 :42-48
[43]   Multiphase solutions and their reductions for a nonlocal nonlinear Schrodinger equation with focusing nonlinearity [J].
Matsuno, Yoshimasa .
STUDIES IN APPLIED MATHEMATICS, 2023, 151 (03) :883-922
[44]   Breather similariton solutions of the nonlocal nonlinear Schrodinger equation with varying coefficients [J].
Wang, Yan ;
Wang, Nan ;
Zhang, Ruifang .
OPTIK, 2022, 270
[45]   Breather solutions of the nonlocal nonlinear self-focusing Schrodinger equation [J].
Zhong, Wei-Ping ;
Yang, Zhengping ;
Belic, Milivoj ;
Zhong, WenYe .
PHYSICS LETTERS A, 2021, 395
[46]   Soliton solutions of higher-order nonlinear schrodinger equation (NLSE) and nonlinear kudryashov's equation [J].
Arshed, Saima ;
Arif, Aqsa .
OPTIK, 2020, 209
[47]   Long time asymptotic behavior of the focusing nonlinear Schrodinger equation [J].
Borghese, Michael ;
Jenkins, Robert ;
McLaughlin, Kenneth D. T-R .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (04) :887-920
[48]   A variety of new optical soliton solutions related to the nonlinear Schrodinger equation with time-dependent coefficients [J].
Osman, M. S. ;
Ali, Khaled K. ;
Gomez-Aguilar, J. F. .
OPTIK, 2020, 222
[49]   Backlund transformation and multi-soliton solutions for the discrete Korteweg-de Vries equation [J].
Dong, Suyalatu ;
Lan, Zhong-Zhou ;
Gao, Bo ;
Shen, Yujia .
APPLIED MATHEMATICS LETTERS, 2022, 125
[50]   Fokas-Lenells equation: Three types of Darboux transformation and multi-soliton solutions [J].
Wang, Yao ;
Xiong, Zhi-Jin ;
Ling, Liming .
APPLIED MATHEMATICS LETTERS, 2020, 107