On the adoption of a fractional-order sliding surface for the robust control of integer-order LTI plants

被引:26
|
作者
Corradini, Maria Letizia [1 ]
Giambo, Roberto [1 ]
Pettinari, Silvia [1 ]
机构
[1] Univ Camerino, Scuola Sci & Tecnol, I-62032 Camerino, MC, Italy
关键词
Fractional-order control; Sliding-mode control; Robust control; WAVE-EQUATION; MODE CONTROL; SYSTEMS; DESIGN;
D O I
10.1016/j.automatica.2014.10.075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the possible adoption of a fractional order sliding surface for the robust control of perturbed integer-order LTI systems. It is proved that the standard approach used in Sliding Model Control (SMC) cannot be used and a substantial redesign of the control policy is needed. A novel control strategy is discussed, ensuring that the sliding manifold is hit at an infinite sequence of time instants becoming denser as time grows. Interesting asymptotic properties are derived relatively to the closed loop response in the presence of a wide class of disturbances. It is also proved that the chattering phenomenon may be remarkably alleviated. A careful simulation study is reported using an electromechanical system taken from the literature, which includes also a comparative analysis of performances with respect to standard SMC and second-order SMC. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:364 / 371
页数:8
相关论文
共 50 条
  • [1] Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control
    Li, Ruihong
    Li, Wei
    OPTIK, 2015, 126 (21): : 2965 - 2973
  • [2] Adaptive Fractional-Order Backstepping Control for a General Class of Nonlinear Uncertain Integer-Order Systems
    Li, Xinyao
    Wen, Changyun
    Li, Xiaolei
    He, Jinsong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (07) : 7246 - 7256
  • [3] A Hybrid Approximation Method for Integer-Order Approximate Realization of Fractional-Order Derivative Operators
    Koseoglu, Murat
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (13)
  • [4] Optimal Tuning for Fractional-Order Controllers: An Integer-Order Approximating Filter Approach
    Rahimian, Mohammad Amin
    Tavazoei, Mohammad Saleh
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2013, 135 (02):
  • [5] An Integer-Order Transfer Function Estimation Algorithm for Fractional-Order PID Controllers
    Bingi, Kishore
    Ibrahim, Rosdiazli
    Karsiti, Mohd Noh
    Hassan, Sabo Miya
    Harindran, Vivekananda Rajah
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2020, 11 (03) : 133 - 150
  • [6] Fractional Order Robust Controller for Fractional-Order Interval Plants
    Mihaly, Vlad
    Susca, Mircea
    Dulf, Eva H.
    Morar, Dora
    Dobra, Petru
    IFAC PAPERSONLINE, 2022, 55 (25): : 151 - 156
  • [7] Optimal integer-order rational approximation of α and α plus β fractional-order generalised analogue filters
    Mahata, Shibendu
    Saha, Suman
    Kar, Rajib
    Mandel, Durbadal
    IET SIGNAL PROCESSING, 2019, 13 (05) : 516 - 527
  • [8] Stabilizing fractional-order PI and PD controllers: an integer-order implemented system approach
    Rahimian, M. A.
    Tavazoei, M. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I8) : 893 - 903
  • [9] Comparison of Fractional-Order and Integer-Order H∞ Control of a Non-Collocated Two-Mass Oscillator
    Voss, Benjamin
    Ruderman, Michael
    Weise, Christoph
    Reger, Johann
    IFAC PAPERSONLINE, 2022, 55 (25): : 145 - 150
  • [10] General robustness analysis and robust fractional-order PD controller design for fractional-order plants
    Liu, Lu
    Zhang, Shuo
    Xue, Dingyu
    Chen, Yang Quan
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12) : 1730 - 1736