Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators

被引:166
|
作者
Zou, Chang-Ling [1 ,2 ]
Cui, Jin-Ming [1 ,2 ]
Sun, Fang-Wen [1 ,2 ]
Xiong, Xiao [1 ,2 ]
Zou, Xu-Bo [1 ,2 ]
Han, Zheng-Fu [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
机构
[1] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat Quantum Phy, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Bound state in the continuum; waveguide; microresonator; light--matter interaction; NONLINEAR OPTICS; QUANTUM; SILICON; EMISSION;
D O I
10.1002/lpor.201400178
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Light is usually confined in photonic structures with a band gap or relatively high refractive index for broad scientific and technical applications. Here, a light confinement mechanism is proposed based on the photonic bound state in the continuum (BIC). In a low-refractive-index waveguide on a high-refractive-index thin membrane, optical dissipation is forbidden because of the destructive interference of various leakage channels. The BIC-based low-mode-area waveguide and high-Q microresonator can be used to enhance light-matter interaction for laser, nonlinear optical and quantum optical applications. For example, a polymer structure on a diamond membrane shows excellent optical performance that can be achieved with large fabrication tolerance. It can induce strong coupling between photons and the nitrogen-vacancy center in diamond for scalable quantum information processors and networks.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 50 条
  • [1] Subwavelength confinement in an all-dielectric slot waveguide with bound states in the continuum for ultrahigh-Q microresonators
    Zhong, Ping
    Jiang, Peng
    Yuan, Chenchen
    Liu, Hanyue
    Gu, Zhiyuan
    OPTICS EXPRESS, 2024, 32 (17): : 29189 - 29199
  • [2] Realizing Ultrahigh-Q Resonances Through Harnessing Symmetry-Protected Bound States in the Continuum
    Huang, Lujun
    Li, Shuangli
    Zhou, Chaobiao
    Zhong, Haozong
    You, Shaojun
    Li, Lin
    Cheng, Ya
    Miroshnichenko, Andrey E.
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (11)
  • [3] Topologically enabled ultrahigh-Q chiroptical resonances by merging bound states in the continuum
    Wan, Shun
    Wang, Keda
    Wang, Fatian
    Guan, Chunying
    Li, Wenjia
    Liu, Jianlong
    Bogdanov, Andrey
    Belov, Pavel A.
    Shi, Jinhui
    OPTICS LETTERS, 2022, 47 (13) : 3291 - 3294
  • [4] Merging bound states in the continuum in all-dielectric metasurfaces for ultrahigh-Q resonances
    Zong, Xueyang
    Li, Lixia
    Liu, Yufang
    OPTICS LETTERS, 2023, 48 (19) : 5045 - 5048
  • [5] Ultrahigh-Q Resonance in Bound States in the Continuum-Enabled Plasmonic Terahertz Metasurface
    Islam, Md Saiful
    Upadhyay, Aditi
    Ako, Rajour Tanyi
    Lawrence, Nicholas P.
    Sultana, Jakeya
    Ranjan, Abhishek
    Ng, Brian Wai-Him
    Tansu, Nelson
    Bhaskaran, Madhu
    Sriram, Sharath
    Abbott, Derek
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (09):
  • [6] Cavity optomechanics with ultrahigh-Q crystalline microresonators
    Hofer, J.
    Schliesser, A.
    Kippenberg, T. J.
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [7] Robust Ultrahigh-Q Quasi-Bound States in the Continuum in Metasurfaces Enabled by Lattice Hybridization
    Luo, Xiaoqing
    Han, Yingying
    Du, Xiang
    Chen, Shuai
    Li, Guangyuan
    ADVANCED OPTICAL MATERIALS, 2023, 11 (24)
  • [8] Subwavelength thick ultrahigh-Q terahertz disc microresonators
    DOMINIK WALTER VOGT
    ANGUS HARVEY JONES
    THOMAS ALAN HAASE
    RAINER LEONHARDT
    Photonics Research, 2020, 8 (07) : 1183 - 1188
  • [9] All-precision-machining fabrication of ultrahigh-Q crystalline optical microresonators
    Fujii, Shun
    Hayama, Yuka
    Imamura, Kosuke
    Kumazaki, Hajime
    Kakinuma, Yasuhiro
    Tanabe, Takasumi
    OPTICA, 2020, 7 (06): : 694 - 701
  • [10] Subwavelength thick ultrahigh-Q terahertz disc microresonators
    Vogt, Dominik Walter
    Jones, Angus Harvey
    Haase, Thomas Alan
    Leonhardt, Rainer
    PHOTONICS RESEARCH, 2020, 8 (07) : 1183 - 1188