The First Fundamental Equation and Generalized Wintgen-Type Inequalities for Submanifolds in Generalized Space Forms

被引:10
作者
Aquib, Mohd [1 ]
Boyom, Michel Nguiffo [2 ]
Shahid, Mohammad Hasan [1 ]
Vilcu, Gabriel-Eduard [3 ]
机构
[1] Jamia Millia Islamia, Dept Math, Fac Nat Sci, New Delhi 110025, India
[2] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, CC051,Pl E Bataillon, F-34095 Montpellier, France
[3] Petr Gas Univ Ploiesti, Dept Cybernet Econ Informat Finance & Accountancy, Bd Bucuresti 39, Ploiesti 100680, Romania
关键词
Wintgen inequality; generalized complex space form; generalized Sasakian space form; Lagrangian submanifold; Legendrian submanifold; SCALAR CURVATURE CONJECTURE; BI-SLANT SUBMANIFOLDS;
D O I
10.3390/math7121151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we first derive a generalized Wintgen type inequality for a Lagrangian submanifold in a generalized complex space form. Further, we extend this inequality to the case of bi-slant submanifolds in generalized complex and generalized Sasakian space forms and derive some applications in various slant cases. Finally, we obtain obstructions to the existence of non-flat generalized complex space forms and non-flat generalized Sasakian space forms in terms of dimension of the vector space of solutions to the first fundamental equation on such spaces.
引用
收藏
页数:20
相关论文
共 51 条
[21]   SLANT IMMERSIONS [J].
CHEN, BY .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 41 (01) :135-147
[22]  
De Smet P.J., 1999, Arch. Math. (Brno), V35, P115
[24]   A proof of the DDVV conjecture and its equality case [J].
Ge Jianquan ;
Tang Zizhou .
PACIFIC JOURNAL OF MATHEMATICS, 2008, 237 (01) :87-95
[25]  
Gray A., 1970, J DIFFER GEOM, V4, P283
[26]   NORMAL CURVATURE OF SURFACES IN SPACE-FORMS [J].
GUADALUPE, IV ;
RODRIGUEZ, L .
PACIFIC JOURNAL OF MATHEMATICS, 1983, 106 (01) :95-103
[27]  
Gupta R. S., 2013, Sarajevo J. Math., V9, P117, DOI [10.5644/SJM.09.1.11, DOI 10.5644/SJM.09.1.11]
[28]   Natural Intrinsic Geometrical Symmetries [J].
Haesen, Stefan ;
Verstraelen, Leopold .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
[29]   Invariant subnianifolds of generalized Sasakian-space-forms [J].
Hui, Shyamal Kumar ;
Uddin, Siraj ;
Alkhaldi, ALi H. ;
Mandal, Pradip .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (09)
[30]   On 4-dimensional generalized complex space forms [J].
Kim, UK .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 66 :379-387