Coordinative integration of amorphous nickel-imidazole framework with graphitic carbon nitride for enhanced photocatalytic hydrogen production

被引:29
|
作者
Rajan, Aswathy [1 ]
Neppolian, B. [1 ]
机构
[1] SRM Inst Sci & Technol, Dept Chem, Chennai 603203, Tamil Nadu, India
关键词
Nickel-imidazole framework; Amorphous metal-organic framework; g-C3N4; Photocatalytic hydrogen production; Type-II heterojunction; METAL-ORGANIC FRAMEWORKS; ARTIFICIAL PHOTOSYNTHESIS; HOMOGENEOUS SYSTEM; SURFACE; CRYSTALLINE; PARTICLES; CONSTRUCTION; SEPARATION; HYBRID; SILICA;
D O I
10.1016/j.apmt.2022.101524
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, a new nickel metal-organic framework (Ni-MOF) was integrated with graphitic carbon nitride (g-C3N4) (prepared by polycondensation of different precursors, i.e., urea, thiourea and melamine) using the solvothermal method and used for the photocatalytic hydrogen production. Notably, crystalline Ni-MOF was unable to bond with g-C3N4 due to completely coordinated nickel sites in Ni-MOF, but amorphous Ni-MOF (aNi-MOF) successfully bonded with g-C3N4 owing to its uncoordinated nickel sites. The aNi-MOF incorporated with g-C3N4 (prepared by urea) exhibited hydrogen production of 2272.6 mu mol g-1 h-1 which was ~450, 4 and 7 times higher than aNi-MOF, thiourea and melamine derived g-C3N4 integrated with aNi-MOF, respectively. The substantial increment in photocatalytic activity can be attributed to the synergistic structural reconstruction of gC3N4/aNi-MOF in accordance with varying dangling amine groups, surface area and porosity offered by different precursors in formation of g-C3N4. Remarkably, the proposed work is the first report on the photocatalytic hydrogen production by an amorphous metal-organic framework and also an imidazole-based nickel framework. Thus, this work provides insight into the designing amorphous MOF- extended polymer heterostructure and will open up a new avenue to their catalytic performances.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Energy band engineering of graphitic carbon nitride for photocatalytic hydrogen peroxide production
    Gao, Tengyang
    Zhao, Degui
    Yuan, Saisai
    Zheng, Ming
    Pu, Xianjuan
    Tang, Liang
    Lei, Zhendong
    CARBON ENERGY, 2024, 6 (11)
  • [22] Photocatalytic hydrogen production using graphitic carbon nitride (GCN): A precise review
    Sharma, Rishabh
    Almasi, Miroslav
    Nehra, Satya Pal
    Rao, Vikrant Singh
    Panchal, Priyanka
    Paul, Devina Rattan
    Jain, Indra Prabh
    Sharma, Anshu
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 168
  • [23] Enhanced boron modified graphitic carbon nitride for the selective photocatalytic production of benzaldehyde
    Quintana, M. Alejandra
    Solis, Rafael R.
    Martin-Lara, M. Angeles
    Blazquez, Gabriel
    Calero, F. Monica
    Munoz-Batisa, Mario J.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 298
  • [24] Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance
    Xu, Jing
    Wang, Yajun
    Zhu, Yongfa
    LANGMUIR, 2013, 29 (33) : 10566 - 10572
  • [25] Simple Nickel-Based Catalyst Systems Combined With Graphitic Carbon Nitride for Stable Photocatalytic Hydrogen Production in Water
    Dong, Jingfeng
    Wang, Mei
    Li, Xueqiang
    Chen, Lin
    He, Yu
    Sun, Licheng
    CHEMSUSCHEM, 2012, 5 (11) : 2133 - 2138
  • [26] The doping of phosphorus atoms into graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution
    Fang, Xiao-Xiang
    Ma, Liu-Bo
    Liang, Kuang
    Zhao, Sheng-Jie
    Jiang, Yi-Fan
    Ling, Cong
    Zhao, Tan
    Cheang, Tuck-Yun
    Xu, An-Wu
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) : 11506 - 11512
  • [27] Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production
    Liang, Qinghua
    Li, Zhi
    Huang, Zheng-Hong
    Kang, Feiyu
    Yang, Quan-Hong
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (44) : 6885 - 6892
  • [28] Facile synthesis of nitrogen deficient graphitic carbon nitride for photocatalytic hydrogen production activity
    Pandi, Kavitha
    Lakhera, Sandeep Kumar
    Neppolian, Bernaurdshaw
    MATERIALS LETTERS, 2021, 303
  • [29] Phosphorus doped and defect modified graphitic carbon nitride for boosting photocatalytic hydrogen production
    Chen, Lu
    Yan, Guiyang
    Liu, Xiyao
    Ying, Shaoming
    Xia, Yuzhou
    Ning, Shangbo
    Wang, Xuxu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 25 (01) : 117 - 123
  • [30] Graphitic carbon nitride synthesized by simple pyrolysis: role of precursor in photocatalytic hydrogen production
    Ismael, Mohammed
    Wu, Ying
    Taffa, Dereje H.
    Bottke, Patrick
    Wark, Michael
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (18) : 6909 - 6920