Geometry of quantum state space and quantum correlations

被引:6
|
作者
Deb, Prasenjit [1 ,2 ]
机构
[1] Bose Inst, Dept Phys, Kolkata 700091, India
[2] Bose Inst, Ctr Astroparticle Phys & Space Sci, Kolkata 700091, India
关键词
Quantum correlations; Negativity; Entanglement; Riemannian metrics; STATISTICAL DISTANCE; MONOTONE METRICS; BELL THEOREM; INFORMATION; CRYPTOGRAPHY; MECHANICS;
D O I
10.1007/s11128-015-1227-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state space is endowed with a metric structure, and Riemannian monotone metric is an important geometric entity defined on such a metric space. Riemannian monotone metrics are very useful for information-theoretic and statistical considerations on the quantum state space. In this article, considering the quantum state space being spanned by 2x2 density matrices, we determine a particular Riemannian metric for a state rho and show that if rho gets entangled with another quantum state, the negativity of the generated entangled state is, upto a constant factor, equal to square root of that particular Riemannian metric . Our result clearly relates a geometric quantity to a measure of entanglement. Moreover, the result establishes the possibility of understanding quantum correlations through geometric approach.
引用
收藏
页码:1629 / 1638
页数:10
相关论文
共 50 条
  • [21] Quantum and Classical Correlations in Quantum Measurement
    Xi, Zhengjun
    Li, Yongming
    FOUNDATIONS OF PHYSICS, 2013, 43 (03) : 285 - 293
  • [22] Quantum correlations and distinguishability of quantum states
    Spehner, Dominique
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (07)
  • [23] Quantum correlations support probabilistic pure state cloning
    Roa, Luis
    Alid-Vaccarezza, M.
    Jara-Figueroa, C.
    Klimov, A. B.
    PHYSICS LETTERS A, 2014, 378 (13) : 941 - 945
  • [24] Geometry of a two-spin quantum state in evolution
    Kuzmak, A. R.
    Tkachuk, V. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (04)
  • [25] Geometry, quantum correlations, and phase transitions in the ?-atomic configuration
    Castanos, O.
    Cordero, S.
    Lopez-Pena, R.
    Nahmad-Achar, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (48)
  • [26] MULTIPARTITE QUANTUM CORRELATIONS: SYMPLECTIC AND ALGEBRAIC GEOMETRY APPROACH
    Sawicki, Adam
    Maciazek, Tomasz
    Karnas, Katarzyna
    Kowalczyk-Murynka, Katarzyna
    Kus, Marek
    Oszmaniec, Michal
    REPORTS ON MATHEMATICAL PHYSICS, 2018, 82 (01) : 81 - 111
  • [27] Intrinsic structure of state space of a quantum system
    Ma, Zhi-Hao
    Zhu, Sen
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (03)
  • [28] Geometry of quantum dynamics in infinite-dimensional Hilbert space
    Grabowski, Janusz
    Kus, Marek
    Marmo, Giuseppe
    Shulman, Tatiana
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (16)
  • [29] Quantum Correlations Evolution Asymmetry in Quantum Channels
    Li, Meng
    Huang, Yun-Feng
    Guo, Guang-Can
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 67 (03) : 267 - 272
  • [30] Hidden correlations in quantum optics and quantum information
    Man'ko, Margarita A.
    SYMMETRIES IN SCIENCE XVII, 2018, 1071