Geometry of quantum state space and quantum correlations

被引:7
作者
Deb, Prasenjit [1 ,2 ]
机构
[1] Bose Inst, Dept Phys, Kolkata 700091, India
[2] Bose Inst, Ctr Astroparticle Phys & Space Sci, Kolkata 700091, India
关键词
Quantum correlations; Negativity; Entanglement; Riemannian metrics; STATISTICAL DISTANCE; MONOTONE METRICS; BELL THEOREM; INFORMATION; CRYPTOGRAPHY; MECHANICS;
D O I
10.1007/s11128-015-1227-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state space is endowed with a metric structure, and Riemannian monotone metric is an important geometric entity defined on such a metric space. Riemannian monotone metrics are very useful for information-theoretic and statistical considerations on the quantum state space. In this article, considering the quantum state space being spanned by 2x2 density matrices, we determine a particular Riemannian metric for a state rho and show that if rho gets entangled with another quantum state, the negativity of the generated entangled state is, upto a constant factor, equal to square root of that particular Riemannian metric . Our result clearly relates a geometric quantity to a measure of entanglement. Moreover, the result establishes the possibility of understanding quantum correlations through geometric approach.
引用
收藏
页码:1629 / 1638
页数:10
相关论文
共 30 条
[1]  
Amari S., 2007, METHODS INFORM GEOME
[2]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[3]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[6]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[7]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[8]   Partial transposition as a direct link between concurrence and negativity [J].
Eltschka, Christopher ;
Toth, Geza ;
Siewert, Jens .
PHYSICAL REVIEW A, 2015, 91 (03)
[9]   Wigner-Yanase information on quantum state space: The geometric approach [J].
Gibilisco, P ;
Isola, T .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (09) :3752-3762
[10]   A characterisation of Wigner-Yanase skew information among statistically monotone metrics [J].
Gibilisco, P ;
Isola, T .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2001, 4 (04) :553-557