Current Status and Future Directions of Bacteria-Based Immunotherapy

被引:32
作者
Tang, Quan [1 ,2 ]
Peng, Xian [1 ]
Xu, Bo [3 ,4 ]
Zhou, Xuedong [1 ,2 ]
Chen, Jing [1 ,2 ]
Cheng, Lei [1 ,2 ]
机构
[1] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, State Key Lab Oral Dis, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp Stomatol, Dept Operat Dent & Endodont, Chengdu, Peoples R China
[3] Xuzhou Med Univ, Canc Inst, Xuzhou, Peoples R China
[4] Xuzhou Med Univ, Ctr Clin Oncol, Affiliated Hosp, Xuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
immunotherapy; bacterial therapy; engineered bacteria; synthetic biology; microbiology; ATTENUATED SALMONELLA-TYPHIMURIUM; LISTERIA-MONOCYTOGENES; CANCER-IMMUNOTHERAPY; TUMOR-GROWTH; GENE-EXPRESSION; PHASE-I; THERAPY; CELLS; MICROENVIRONMENT; VACCINATION;
D O I
10.3389/fimmu.2022.911783
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
With the in-depth understanding of the anti-cancer immunity, immunotherapy has become a promising cancer treatment after surgery, radiotherapy, and chemotherapy. As natural immunogenicity substances, some bacteria can preferentially colonize and proliferate inside tumor tissues to interact with the host and exert anti-tumor effect. However, further research is hampered by the infection-associated toxicity and their unpredictable behaviors in vivo. Due to modern advances in genetic engineering, synthetic biology, and material science, modifying bacteria to minimize the toxicity and constructing a bacteria-based immunotherapy platform has become a hotspot in recent research. This review will cover the inherent advantages of unedited bacteria, highlight how bacteria can be engineered to provide greater tumor-targeting properties, enhanced immune-modulation effect, and improved safety. Successful applications of engineered bacteria in cancer immunotherapy or as part of the combination therapy are discussed as well as the bacteria based immunotherapy in different cancer types. In the end, we highlight the future directions and potential opportunities of this emerging field.
引用
收藏
页数:16
相关论文
共 132 条
[11]   Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer [J].
Bullman, Susan ;
Pedamallu, Chandra S. ;
Sicinska, Ewa ;
Claney, Thomas E. ;
Zhang, Xiaoyang ;
Cai, Diana ;
Neuberg, Donna ;
Huang, Katherine ;
Guevara, Fatima ;
Nelson, Timothy ;
Chipashvili, Otari ;
Hagan, Timothy ;
Walker, Mark ;
Ramachandran, Aruna ;
Diosdado, Begona ;
Serna, Garazi ;
Mulet, Nuria ;
Landolfi, Stefania ;
Ramon y Cajal, Santiago ;
Fasani, Roberta ;
Aguirre, Andrew J. ;
Ng, Kimmie ;
Elez, Elena ;
Ogino, Shuji ;
Tabernero, Josep ;
Fuchs, Charles S. ;
Hahn, William C. ;
Nuciforo, Paolo ;
Meyerson, Matthew .
SCIENCE, 2017, 358 (6369) :1443-+
[12]   Preventive vaccination against tuberculosis with BC G and the Lubeck casualties [J].
Calmette, A .
JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1931, 96 :58-59
[13]   Metabolic modulation of tumours with engineered bacteria for immunotherapy [J].
Canale, Fernando P. ;
Basso, Camilla ;
Antonini, Gaia ;
Perotti, Michela ;
Li, Ning ;
Sokolovska, Anna ;
Neumann, Julia ;
James, Michael J. ;
Geiger, Stefania ;
Jin, Wenjie ;
Theurillat, Jean-Philippe ;
West, Kip A. ;
Leventhal, Daniel S. ;
Lora, Jose M. ;
Sallusto, Federica ;
Geiger, Roger .
NATURE, 2021, 598 (7882) :662-+
[14]   Helicobacter pylori-induced RASAL2 Through Activation of Nuclear Factor-κB Promotes Gastric Tumorigenesis via β-catenin Signaling Axis [J].
Cao, Longlong ;
Zhu, Shoumin ;
Lu, Heng ;
Soutto, Mohammed ;
Bhat, Nadeem ;
Chen, Zheng ;
Peng, Dunfa ;
Lin, Jianxian ;
Lu, Jun ;
Li, Ping ;
Zheng, Chaohui ;
Huang, Changming ;
El-Rifai, Wael .
GASTROENTEROLOGY, 2022, 162 (06) :1716-+
[15]   Targeting macrophages: therapeutic approaches in cancer [J].
Cassetta, Luca ;
Pollard, Jeffrey W. .
NATURE REVIEWS DRUG DISCOVERY, 2018, 17 (12) :887-904
[16]   Myeloid-derived suppressor cells have a central role in attenuated Listeria monocytogenes-based immunotherapy against metastatic breast cancer in young and old mice [J].
Chandra, D. ;
Jahangir, A. ;
Quispe-Tintaya, W. ;
Einstein, M. H. ;
Gravekamp, C. .
BRITISH JOURNAL OF CANCER, 2013, 108 (11) :2281-2290
[17]   Salmonella enhance chemosensitivity in tumor through connexin 43 upregulation [J].
Chang, Wen-Wei ;
Lai, Chih-Ho ;
Chen, Man-Chin ;
Liu, Chi-Fan ;
Kuan, Yu-Diao ;
Lin, Song-Tao ;
Lee, Che-Hsin .
INTERNATIONAL JOURNAL OF CANCER, 2013, 133 (08) :1926-1935
[18]   Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy [J].
Chen, Fuming ;
Zang, Zhongsheng ;
Chen, Ze ;
Cui, Liao ;
Chang, Zhiguang ;
Ma, Aiqing ;
Yin, Ting ;
Liang, Ruijing ;
Han, Yutong ;
Wu, Zhihao ;
Zheng, Mingbin ;
Liu, Chenli ;
Cai, Lintao .
BIOMATERIALS, 2019, 214
[19]   Bioengineering Bacterial Vesicle-Coated Polymeric Nanomedicine for Enhanced Cancer Immunotherapy and Metastasis Prevention [J].
Chen, Qi ;
Bai, Hongzhen ;
Wu, Wangteng ;
Huang, Guojun ;
Li, Yang ;
Wu, Min ;
Tang, Guping ;
Ping, Yuan .
NANO LETTERS, 2020, 20 (01) :11-21
[20]   Inhibition of Tumor Progression through the Coupling of Bacterial Respiration with Tumor Metabolism [J].
Chen, Qi-Wen ;
Wang, Jia-Wei ;
Wang, Xia-Nan ;
Fan, Jin-Xuan ;
Liu, Xin-Hua ;
Li, Bin ;
Han, Zi-Yi ;
Cheng, Si-Xue ;
Zhang, Xian-Zheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (48) :21562-21570