HADWIGER INTEGRATION OF RANDOM FIELDS

被引:1
作者
Wright, Matthew L. [1 ]
机构
[1] Univ Minnesota, Inst Math & Its Applicat, Minneapolis, MN 55455 USA
关键词
Hadwiger integral; intrinsic volume; random field; Gaussian kinematic formula; DEFINABLE FUNCTIONS; EULER INTEGRATION;
D O I
10.12775/TMNA.2015.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hadwiger integrals employ the intrinsic volumes as measures for integration of real-valued functions. We provide a formula for the expected values of Hadwiger integrals of Gaussian-related random fields. The expected Hadwiger integrals of random fields' are both theoretically interesting and potentially useful in applications such as sensor networks, image processing, and cell dynamics. Furthermore, combining the expected integrals with a functional version of Hadwiger's theorem, we obtain expected values of more general valuations on Gaussian-related random fields.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 11 条
[1]  
Adler R.J., 2007, RANDOM FIELDS GEOMET
[2]  
[Anonymous], 1997, LEZIONI LINCEE
[3]   Hadwiger's Theorem for definable functions [J].
Baryshnikov, Y. ;
Ghrist, R. ;
Wright, M. .
ADVANCES IN MATHEMATICS, 2013, 245 :573-586
[4]   Euler integration over definable functions [J].
Baryshnikov, Yuliy ;
Ghrist, Robert .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (21) :9525-9530
[5]   TARGET ENUMERATION VIA EULER CHARACTERISTIC INTEGRALS [J].
Baryshnikov, Yuliy ;
Ghrist, Robert .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (03) :825-844
[6]   EULER INTEGRATION OF GAUSSIAN RANDOM FIELDS AND PERSISTENT HOMOLOGY [J].
Bobrowski, Omer ;
Borman, Matthew Strom .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2012, 4 (01) :49-70
[7]  
Chung M.K., 2003, LECT 01 GAUSSIAN RAN
[8]  
Gray A., 2004, TUBES
[9]   The von Neumann relation generalized to coarsening of three-dimensional microstructures [J].
MacPherson, Robert D. ;
Srolovitz, David J. .
NATURE, 2007, 446 (7139) :1053-1055
[10]  
Schneider R, 2008, PROBAB APPL SER, P1