Supervised Learning Classifier Based Transmit Antenna Selection for SM-MIMO System

被引:4
作者
Mohamed, Abeer [1 ]
Bai, Zhiquan [1 ]
Twarayisenze, Jean Paul [1 ]
Pang, Ke [1 ]
Li, Guangyu [1 ]
Femi-Philips, Oloruntomilayo [1 ]
Yang, Xinghai [2 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Shandong Prov Key Lab Wireless Commun Technol, Qingdao 266237, Shandong, Peoples R China
[2] Qingdao Univ Sci & Technol, Sch Informat Sci & Technol, Qingdao 266061, Shandong, Peoples R China
来源
IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC) | 2021年
关键词
Transmit antenna selection; SM-MIMO; supervised learning classifier; random forest decision; deep neural network; ADAPTIVE SPATIAL MODULATION;
D O I
10.1109/IWCMC51323.2021.9498900
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose the supervised learning classifier (SLC) based transmit antenna selection (TAS) for spatial modulation (SM) multiple-input multiple-output (MIMO) system. Firstly, the classical Euclidean distance based antenna selection (EDAS) method is investigated. Secondly, we convert the typical TAS problem into a classification problem and propose a low complexity multi-output classifier design. Then, two SLC schemes, random forest decision (RFD) and deep neural network (DNN) with adaptive momentum (ADAM) optimization, are employed to solve the TAS problem. Numerical results illustrate that the proposed DNN based TAS (DNN-TAS) scheme obtains better average bit error rate (ABER) performance than the RFD based TAS (RFD-TAS) scheme and outperforms the typical TAS methods with much lower complexity. Moreover, the proposed DNN-TAS scheme achieves the suboptimal ABER performance at high signal-to-noise ratio (SNR) region compared with the optimal high complexity EDAS algorithm.
引用
收藏
页码:110 / 115
页数:6
相关论文
共 14 条
[1]   Space-Time Block Coded Spatial Modulation [J].
Basar, Ertugrul ;
Aygolu, Umit ;
Panayirci, Erdal ;
Poor, H. Vincent .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (03) :823-832
[2]   Learning Optimal Resource Allocations in Wireless Systems [J].
Eisen, Mark ;
Zhang, Clark ;
Chamon, Luiz F. O. ;
Lee, Daniel D. ;
Ribeiro, Alejandro .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (10) :2775-2790
[3]   Machine Learning-Based Antenna Selection in Wireless Communications [J].
Joung, Jingon .
IEEE COMMUNICATIONS LETTERS, 2016, 20 (11) :2241-2244
[4]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[5]   A Low-Complexity Method for Antenna Selection in Spatial Modulation Systems [J].
Ntontin, Konstantinos ;
Di Renzo, Marco ;
Perez-Neira, Ana I. ;
Verikoukis, Christos .
IEEE COMMUNICATIONS LETTERS, 2013, 17 (12) :2312-2315
[6]  
Rajashekar R, 2012, TENCON IEEE REGION
[7]  
Renzo M. D., 2010, P IEEE INT C COMM NE, P1
[8]  
Stavridis A., 2013, P IEEE 78 VEH TECHN, P1
[9]   Reduced-Complexity Coherent Versus Non-Coherent QAM-Aided Space-Time Shift Keying [J].
Sugiura, Shinya ;
Xu, Chao ;
Ng, Soon Xin ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (11) :3090-3101
[10]   Adaptive Spatial Modulation MIMO Based on Machine Learning [J].
Yang, Ping ;
Xiao, Yue ;
Xiao, Ming ;
Guan, Yong Liang ;
Li, Shaoqian ;
Xiang, Wei .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (09) :2117-2131