TSpoon: Transactions on a stream processor

被引:9
作者
Affetti, Lorenzo [1 ]
Margara, Alessandro [1 ]
Cugola, Gianpaolo [1 ]
机构
[1] Politecn Milan, DEIB, Milan, Italy
关键词
Distributed Stream processing; Data databases; Transactions; Queryable state; TSpoon; MODEL;
D O I
10.1016/j.jpdc.2020.03.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Stream processing systems are increasingly becoming a core element in the data processing stack of many large companies, where they complement data management frameworks to build comprehensive solutions for processing, storage, and query. The adoption of separate tools leads to complex architectures that leave developers with the difficult task of writing application-specific code that ensures integration correctness. This hinders design, implementation, maintenance, and evolution. We address this problem with a new model that seamlessly integrates data management capabilities within a distributed stream processor. The model makes the state of stream processing operators externally visible and queryable, providing transactional guarantees for state accesses and updates. It enables developers to configure transactions obtaining strong guarantees when needed and relaxing them for higher performance when possible. We introduce the new model and formalize the transactional guarantees it offers. We discuss the implementation of the model into the TSpoon tool and experiment different algorithms to enforce transactional behavior. We evaluate the performance of TSpoon with real world case studies and synthetic workloads, compare it with state-of-the-art tools for distributed in-memory stream processing and data management, and analyze in detail the cost to ensure various transactional semantics. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 35 条
[1]  
A. N. S. for Information Systems, 1992, X31351992 ANSI
[2]   Aurora: a new model and architecture for data stream management [J].
Abadi, DJ ;
Carney, D ;
Cetintemel, U ;
Cherniack, M ;
Convey, C ;
Lee, S ;
Stonebraker, M ;
Tatbul, N ;
Zdonik, S .
VLDB JOURNAL, 2003, 12 (02) :120-139
[3]  
Adya A., 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073), P67, DOI 10.1109/ICDE.2000.839388
[4]  
Affetti L., 2017, P 11 ACM INT C DISTR, P134, DOI DOI 10.1145/3093742.3093929
[5]  
Ahadi D. J., 2005, P C INN DAT SYST RES, P277
[6]  
Akidau T, 2015, PROC VLDB ENDOW, V8, P1792
[7]   The Stratosphere platform for big data analytics [J].
Alexandrov, Alexander ;
Bergmann, Rico ;
Ewen, Stephan ;
Freytag, Johann-Christoph ;
Hueske, Fabian ;
Heise, Arvid ;
Kao, Odej ;
Leich, Marcus ;
Leser, Ulf ;
Markl, Volker ;
Naumann, Felix ;
Peters, Mathias ;
Rheinlaender, Astrid ;
Sax, Matthias J. ;
Schelter, Sebastian ;
Hoeger, Mareike ;
Tzoumas, Kostas ;
Warneke, Daniel .
VLDB JOURNAL, 2014, 23 (06) :939-964
[8]  
[Anonymous], 2012, P 9 USENIX C NETW SY
[9]  
[Anonymous], 2014, P 8 ACM INT C DISTR
[10]   A Survey on Reactive Programming [J].
Bainomugisha, Engineer ;
Carreton, Andoni Lombide ;
Van Cutsem, Tom ;
Mostinckx, Stijn ;
De Meuter, Wolfgang .
ACM COMPUTING SURVEYS, 2013, 45 (04)