Fullerene nanorods supported cobalt nickel sulfide composite as efficient electrocatalyst for oxygen evolution

被引:1
|
作者
Syed, Noureen [1 ]
Huang, Jianfeng [1 ]
Feng, Yongqiang [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Int S&T Cooperat Fdn Shaanxi Prov, Sch Mat Sci & Engn, Xian Key Lab Green Manufacture Ceram Mat, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrocatalyst; oxygen evolution reaction; layered double hydroxide; fullerene; LAYERED DOUBLE HYDROXIDES; C-60; NANORODS; WATER; NANOSHEETS; CONVERSION; CATALYSTS; GRAPHENE; GROWTH;
D O I
10.1080/1536383X.2021.2018680
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
New types of clean and renewable energy conversion and storage technologies such as water electrolysis, fuel cells and metal-air batteries have brought new hopes for solving the world's increasingly serious energy shortage and pollution problems. These electrochemical technologies include important electrode reactions, such as hydrogen evolution reaction (HER), and oxygen evolution reaction (OER). However, the slow kinetics of OER has become a bottleneck restricting the overall efficiency of water splitting. The state-of-the-art OER catalysts are mainly based on Pt, Ir, and Ru in commercial applications today, which are expensive and lack of reserves. Therefore, researchers are working hard to develop highly active and stable non-noble metal compounds as alternatives. In this work, we constructed a novel hybrid nanostructure with ultra-small cobalt nickel sulfide nanoparticles decorated on PVP-modified solvent-free fullerene nanorod (sf-FNR-PVP/CoNi2S4). Benefiting from the efficient charge transfer from CoNi2S4 to FNR matrix, the hybrid material exhibited enhanced OER activity during the electrocatalytic reaction. Impressively, the Tafel slope of sf-FNR-PVP/CoNi2S4 was 82 mV dec(-1), and the charge transfer resistance is 74.2 omega, much better than that of CoNi2S4. Besides, the sf-FNR-PVP/CoNi2S4 exhibited robust electrocatalytic durability. This work provides new opportunity for fullerenes in the field of energy conversion and storage.
引用
收藏
页码:744 / 750
页数:7
相关论文
共 50 条
  • [1] Nickel foam supported cobalt phosphate electrocatalyst for alkaline oxygen evolution reaction
    Liu, Yinmeng
    Yang, Duo
    Liu, Zhongyi
    Yang, Jing-He
    JOURNAL OF POWER SOURCES, 2020, 461 (461)
  • [2] Nickel-foam supported cobalt fluoride hydroxide crystallites as an efficient and durable electrocatalyst for oxygen evolution reaction
    Rajesh, John Anthuvan
    Kang, Soon-Hyung
    Ahn, Kwang-Soon
    MATERIALS LETTERS, 2022, 308
  • [3] Polymeric cobalt phthalocyanine on nickel foam as an efficient electrocatalyst for oxygen evolution reaction
    Shantharaja, Veeresh A.
    Giddaerappa, Koodlur Sannegowda
    Sajjan, Veeresh A.
    Lokesh, Koodlur Sannegowda
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (92) : 35850 - 35861
  • [4] Carbon supported nickel phosphide as efficient electrocatalyst for hydrogen and oxygen evolution reactions
    Kumar, Premnath
    Murthy, Arun Prasad
    Bezerra, Leticia S.
    Martini, Bibiana K.
    Maia, Gilberto
    Madhavan, Jagannathan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (01) : 622 - 632
  • [5] Sulfide doped cobalt oxide nanosphere as a highly efficient electrocatalyst for oxygen evolution reaction
    Guo, Qifei
    Hang, Yu
    He, Rongxing
    JOURNAL OF ATOMIC AND MOLECULAR SCIENCES, 2019, 10 (01): : 1 - 3
  • [6] Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction
    Liu, Tingting
    Liang, Yanhui
    Liu, Qian
    Sun, Xuping
    He, Yuquan
    Asiri, Abdullah M.
    ELECTROCHEMISTRY COMMUNICATIONS, 2015, 60 : 92 - 96
  • [7] MXene supported nickel-cobalt layered double hydroxide as efficient bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
    Navjyoti
    Sharma, Anshul Kumar
    Sharma, Vaishali
    Debnath, A. K.
    Saxena, Vibha
    Mahajan, Aman
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
  • [8] Hierarchically Structured Graphene Aerogel Supported Nickel-Cobalt Oxide Nanowires as an Efficient Electrocatalyst for Oxygen Evolution Reaction
    Guo, Donglei
    Xu, Jiaqi
    Liu, Guilong
    Yu, Xu
    MOLECULES, 2024, 29 (08):
  • [9] Cobalt phosphide/carbon dots composite as an efficient electrocatalyst for oxygen evolution reaction
    Zhu, Mengmeng
    Zhou, Yunjie
    Sun, Yue
    Zhu, Cheng
    Hu, Lulu
    Gao, Jin
    Huang, Hui
    Liu, Yang
    Kang, Zhenhui
    DALTON TRANSACTIONS, 2018, 47 (15) : 5459 - 5464
  • [10] A highly active hydrogen evolution electrocatalyst based on a cobalt-nickel sulfide composite electrode
    Ansovini, Davide
    Lee, Coryl Jing Jun
    Chua, Chin Sheng
    Ong, Lay Ting
    Tan, Hui Ru
    Webb, William R.
    Raja, Robert
    Lim, Yee-Fun
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (25) : 9744 - 9749