Nanometer MOSFET variation in minimum energy subthreshold circuits

被引:86
作者
Verma, Naveen [1 ]
Kwong, Joyce [1 ]
Chandrakasan, Anantha P. [1 ]
机构
[1] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
CMOS digital integrated circuits; leakage currents; logic design; low-power electronics; matching; static random access memory (SRAM); subthreshold; yield estimation;
D O I
10.1109/TED.2007.911352
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Minimum energy operation for digital circuits typically requires scaling the power supply below the device threshold voltage. Advanced technologies offer improved integration, performance, and active-energy efficiency for minimum energy sub-V-t circuits, but are plagued by increased variation and reduced I-ON/I-OFF ratios, which degrade the fundamental device characteristics critical to circuit operation by several orders of magnitude. This paper investigates those characteristics and presents design methodologies and circuit topologies to manage their severe degradation. The issues specific to both general logic and dense static random access memories are analyzed, and solutions that address their distinct design metries are presented.
引用
收藏
页码:163 / 174
页数:12
相关论文
共 34 条
[1]  
Agostinelli M, 2005, INT EL DEVICES MEET, P671
[2]  
[Anonymous], 2007, P IEEE INT SOL STAT
[3]  
[Anonymous], P ACM IEEE INT S LOW
[4]  
Calhoun B. H., 2005, 2005 IEEE International Solid-State Circuits Conference (IEEE Cat. No. 05CH37636), P300
[5]  
Calhoun B.H., 2006, PROC DIGEST TECHNICA, P2592
[6]   Modeling and sizing for minimum energy operation in subthreshold circuits [J].
Calhoun, BH ;
Wang, A ;
Chandrakasan, A .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2005, 40 (09) :1778-1786
[7]   Design considerations for ultra-low energy wireless microsensor nodes [J].
Calhoun, BH ;
Daly, DC ;
Verma, N ;
Finchelstein, DF ;
Wentzloff, DD ;
Wang, A ;
Cho, SH ;
Chandrakasan, AP .
IEEE TRANSACTIONS ON COMPUTERS, 2005, 54 (06) :727-740
[8]   A 5.3GHz 8T-SRAM with operation down to 0.41V in 65nm CMOS [J].
Chang, Leland ;
Nakamura, Yutaka ;
Montoye, Robert K. ;
Sawada, Jim ;
Martin, Andrew K. ;
Kinoshita, Kiyofumi .
2007 SYMPOSIUM ON VLSI CIRCUITS, DIGEST OF TECHNICAL PAPERS, 2007, :252-253
[9]   A 65 nm cmos technology for mobile and digital signal processing applications [J].
Chatterjee, A ;
Yoon, J ;
Zhao, S ;
Tang, S ;
Sadra, K ;
Crank, S ;
Mogul, H ;
Aggarwal, R ;
Chatterjee, B ;
Lytle, S ;
Lin, CT ;
Lee, KD ;
Kim, J ;
Hong, QZ ;
Kim, T ;
Olsen, L ;
Quevedo-Lopez, M ;
Kirmse, K ;
Zhang, G ;
Meek, C ;
Aldrich, D ;
Mair, H ;
Mehrotra, M ;
Adam, L ;
Mosher, D ;
Yang, JY ;
Crenshaw, D ;
Williams, B ;
Jacobs, J ;
Jain, M ;
Rosal, J ;
Houston, T ;
Wu, J ;
Nagaraj, NS ;
Scott, D ;
Ashburn, S ;
Tsao, A .
IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, :665-668
[10]  
Chen JH, 2005, IEEE CIRCUITS DEVICE, V21, P12