AI in Medical Physics Gidelines for publication

被引:31
作者
El Naqa, Issam [1 ]
Boone, John M. [2 ]
Benedict, Stanley H. [3 ]
Goodsitt, Mitchell M. [4 ]
Chan, Heang-Ping [4 ]
Drukker, Karen [5 ]
Hadjiiski, Lubomir [4 ]
Ruan, Dan [6 ]
Sahiner, Berkman [7 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Machine Learning & Radiat Oncol, 12902 Magnolia Dr, Tampa, FL 33612 USA
[2] Univ Calif Davis Hlth, Dept Radiol, Sacramento, CA USA
[3] Univ Calif Davis Hlth, Radiat Oncol, Sacramento, CA USA
[4] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[5] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[6] Univ Calif Los Angeles, Sch Med, Radiat Oncol, Los Angeles, CA USA
[7] US FDA, Silver Spring, MD USA
关键词
D O I
10.1002/mp.15170
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The Abstract is intended to provide a concise summary of the study and its scientific findings. For AI/ML applications in medical physics, a problem statement and rationale for utilizing these algorithms are necessary while highlighting the novelty of the approach. A brief numerical description of how the data are partitioned into subsets for training of the AI/ML algorithm, validation (including tuning of parameters), and independent testing of algorithm performance is required. This is to be followed by a summary of the results and statistical metrics that quantify the performance of the AI/ML algorithm.
引用
收藏
页码:4711 / 4714
页数:4
相关论文
共 13 条
[1]  
[Anonymous], 2019, Advances in Neural Information Processing Systems
[2]   Reporting of artificial intelligence prediction models [J].
Collins, Gary S. ;
Moons, Karel G. M. .
LANCET, 2019, 393 (10181) :1577-1579
[3]   The role of machine and deep learning in modern medical physics [J].
El Naqa, Issam ;
Das, Shiva .
MEDICAL PHYSICS, 2020, 47 (05) :E125-E126
[4]  
Han S., 2016, P INT C LEARNING REP, DOI 10.1007/978-3-662-46587-5_1
[5]  
Lym S., P 2019 IEEE INT S PE
[6]   Comparing multiple comparisons: practical guidance for choosing the best multiple comparisons test [J].
Midway, Stephen ;
Robertson, Matthew ;
Flinn, Shane ;
Kaller, Michael .
PEERJ, 2020, 8
[7]   Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers [J].
Mongan, John ;
Moy, Linda ;
Kahn, Charles E., Jr. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (02)
[8]   Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist [J].
Norgeot, Beau ;
Quer, Giorgio ;
Beaulieu-Jones, Brett K. ;
Torkamani, Ali ;
Dias, Raquel ;
Gianfrancesco, Milena ;
Arnaout, Rima ;
Kohane, Isaac S. ;
Saria, Suchi ;
Topol, Eric ;
Obermeyer, Ziad ;
Yu, Bin ;
Butte, Atul J. .
NATURE MEDICINE, 2020, 26 (09) :1320-1324
[9]  
Nvidia, 2015, GPU BAS DEEP LEARN I
[10]  
Rivera SC, 2020, LANCET DIGIT HEALTH, V2, pE549, DOI [10.1016/S2589-7500(20)30219-3, 10.1136/bmj.m3210, 10.1038/s41591-020-1037-7]