Causes of PM2.5 pollution in an air pollution transport channel city of northern China

被引:4
|
作者
Zhao, Xueyan [1 ,2 ]
Wang, Jing [1 ,2 ]
Xu, Bo [3 ]
Zhao, Ruojie [2 ]
Zhao, Guangjie [1 ]
Wang, Jian [2 ]
Ma, Yinhong [2 ]
Liang, Handong [1 ]
Li, Xianqing [1 ]
Yang, Wen [2 ]
机构
[1] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China
[2] Chinese Res Inst Environm Sci, Beijing 100012, Peoples R China
[3] Zibo Ecoenvironm Monitoring Ctr Shandong Prov, Zibo 255000, Peoples R China
基金
国家重点研发计划;
关键词
Secondary inorganic aerosols; Liquid water content; Formation mechanisms; Source apportionment; Heterogeneous reactions; PM2; 5; Pollution levels; TIANJIN-HEBEI REGION; YANGTZE-RIVER DELTA; SOURCE APPORTIONMENT; CHEMICAL-COMPOSITION; PARTICULATE MATTER; MASS CLOSURE; HAZE POLLUTION; FORMATION MECHANISMS; SEASONAL-VARIATIONS; EVOLUTION PROCESSES;
D O I
10.1007/s11356-021-17431-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To develop effective mitigation policies, a comprehensive understanding of the evolution of the chemical composition, formation mechanisms, and the contribution of sources at different pollution levels is required. PM2.5 samples were collected for 1 year from August 2016 to August 2017 at an urban site in Zibo, then chemical compositions were analyzed. Secondary inorganic aerosols (SNA), anthropogenic minerals (MIN), and organic matter (OM) were the most abundant components of PM2.5, but only the mass fraction of SNA increased as the pollution evolved, implying that PM2.5 pollution was caused by the formation of secondary aerosols, especially nitrate. A more intense secondary transformation was found in the heating season (from November 15, 2016, to March 14, 2017), and a faster secondary conversion of nitrate than sulfate was discovered as the pollution level increased. The formation of sulfate was dominated by heterogeneous reactions. High relative humidity (RH) in polluted periods accelerated the formation of sulfate, and high temperature in the non-heating season also promoted the formation of sulfate. Zibo city was under ammonium-rich conditions during polluted periods in both seasons; therefore, nitrate was mainly formed through homogeneous reactions. The liquid water content increased significantly as the pollution levels increased when the RH was above 80%, indicating that the hygroscopic growth of aerosol aggravated the PM2.5 pollution. Source apportionment showed that PM2.5 was mainly from secondary aerosol formation, road dust, coal combustion, and vehicle emissions, contributing 36.6%, 16.5%, 14.7%, and 13.1% of PM2.5 mass, respectively. The contribution of secondary aerosol formation increased remarkably with the deterioration of air quality, especially in the heating season.
引用
收藏
页码:23994 / 24009
页数:16
相关论文
共 50 条
  • [41] Cluster analysis of PM2.5 pollution in China using the frequent itemset clustering approach
    Zhang, Liankui
    Yang, Guangfei
    ENVIRONMENTAL RESEARCH, 2022, 204
  • [42] Evaluation of PM2.5 air pollution sources and cardiovascular health
    Slawsky, Erik
    Ward-Caviness, Cavin K.
    Neas, Lucas
    Devlin, Robert B.
    Cascio, Wayne E.
    Russell, Armistead G.
    Huang, Ran
    Kraus, William E.
    Hauser, Elizabeth
    Diaz-Sanchez, David
    Weaver, Anne M.
    ENVIRONMENTAL EPIDEMIOLOGY, 2021, 5 (03)
  • [43] Physicochemical Characterization of Air Pollution Particulate Matter (PM2.5 and PM>2.5) in an Urban Area of Cotonou, Benin
    Cachon, Fresnel Boris
    Cazier, Fabrice
    Verdin, Anthony
    Dewaele, Dorothee
    Genevray, Paul
    Delbende, Agnes
    Ayi-Fanou, Lucie
    Aissi, Faustin
    Sanni, Ambaliou
    Courcot, Dominique
    ATMOSPHERE, 2023, 14 (02)
  • [44] Variations in characteristics and transport pathways of PM2.5 during heavy pollution episodes in 2013-2019 in Jinan, a central city in the north China Plain
    Wang, Gang
    Zhu, Zhongyi
    Zhao, Na
    Wei, Peng
    Li, Guohao
    Zhang, Hanyu
    ENVIRONMENTAL POLLUTION, 2021, 284 (284)
  • [45] Study on chemical components and sources of PM2.5 during heavy air pollution periods at a suburban site in Beijing of China
    Liu, Yanju
    Yang, Zheng
    Liu, Qingyang
    Qi, Xuekui
    Qu, Jingming
    Zhang, Shumiao
    Wang, Xinxin
    Jia, Kai
    Zhu, Minghao
    ATMOSPHERIC POLLUTION RESEARCH, 2021, 12 (04) : 188 - 199
  • [46] Variation in the concentrations of atmospheric PM2.5 and its main chemical components in an eastern China city (Hangzhou) since the release of the Air Pollution Prevention and Control Action Plan in 2013
    Niu, Yuwen
    Li, Xinling
    Qi, Bing
    Du, Rongguang
    AIR QUALITY ATMOSPHERE AND HEALTH, 2022, 15 (02): : 321 - 337
  • [47] Impacts of coal burning on ambient PM2.5 pollution in China
    Ma, Qiao
    Cai, Siyi
    Wang, Shuxiao
    Zhao, Bin
    Martin, Randall V.
    Brauer, Michael
    Cohen, Aaron
    Jiang, Jingkun
    Zhou, Wei
    Hao, Jiming
    Frostad, Joseph
    Forouzanfar, Mohammad H.
    Burnett, Richard T.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (07) : 4477 - 4491
  • [48] Status and characteristics of ambient PM2.5 pollution in global megacities
    Cheng, Zhen
    Luo, Lina
    Wang, Shuxiao
    Wang, Yungang
    Sharma, Sumit
    Shimadera, Hikari
    Wang, Xiaoliang
    Bressi, Michael
    de Miranda, Regina Maura
    Jiang, Jingkun
    Zhou, Wei
    Fajardo, Oscar
    Yan, Naiqiang
    Hao, Jiming
    ENVIRONMENT INTERNATIONAL, 2016, 89-90 : 212 - 221
  • [49] The contribution of socioeconomic factors to PM2.5 pollution in urban China
    Jiang, Peng
    Yang, Jun
    Huang, Conghong
    Liu, Huakui
    ENVIRONMENTAL POLLUTION, 2018, 233 : 977 - 985
  • [50] Source Apportionment of PM2.5, PAH and Arsenic Air Pollution in Central Bohemia
    Seibert, Radim
    Nikolova, Irina
    Volna, Vladimira
    Krejci, Blanka
    Hladky, Daniel
    ENVIRONMENTS, 2021, 8 (10)