J-holomorphic curves and Dirac-harmonic maps

被引:0
作者
Hamilton, M. J. D. [1 ]
机构
[1] Univ Stuttgart, Fachbereich Math, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Dirac-harmonic map; J-holomorphic curve; Kahler manifold; REGULARITY;
D O I
10.1016/j.difgeo.2019.101587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dirac-harmonic maps are critical points of a fermionic action functional, generalizing the Dirichlet energy for harmonic maps. We consider the case where the source manifold is a closed Riemann surface with the canonical Spin(c)-structure determined by the complex structure and the target space is a Kahler manifold. If the underlying map f is a J-holomorphic curve, we determine a space of spinors on the Riemann surface which form Dirac-harmonic maps together with f. For suitable complex structures on the target manifold the tangent bundle to the moduli space of J-holomorphic curves consists of Dirac-harmonic maps. We also discuss the relation to the A-model of topological string theory. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 29 条
  • [1] THE BACKGROUND FIELD METHOD AND THE ULTRAVIOLET STRUCTURE OF THE SUPERSYMMETRIC NON-LINEAR SIGMA-MODEL
    ALVAREZGAUME, L
    FREEDMAN, DZ
    [J]. ANNALS OF PHYSICS, 1981, 134 (01) : 85 - 109
  • [2] Some examples of Dirac-harmonic maps
    Ammann, Bernd
    Ginoux, Nicolas
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (05) : 1205 - 1218
  • [3] Dirac-harmonic maps from index theory
    Ammann, Bernd
    Ginoux, Nicolas
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 47 (3-4) : 739 - 762
  • [4] Atiyah M., 1971, Ann. Sci. Ecole Norm. Sup., V4, P47
  • [5] Berline N., 2004, Heat kernels and Dirac operators
  • [6] Dirac-harmonic maps with torsion
    Branding, Volker
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (04)
  • [7] STRINGS IN BACKGROUND FIELDS
    CALLAN, CG
    FRIEDAN, D
    MARTINEC, EJ
    PERRY, MJ
    [J]. NUCLEAR PHYSICS B, 1985, 262 (04) : 593 - 609
  • [8] Regularity theorems and energy identities for Dirac-harmonic maps
    Chen, Q
    Jost, J
    Li, JY
    Wang, GF
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (01) : 61 - 84
  • [9] Liouville theorems for Dirac-harmonic maps
    Chen, Q.
    Jost, J.
    Wang, G.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)
  • [10] Dirac-harmonic maps
    Chen, Qun
    Jost, Juergen
    Li, Jiayu
    Wang, Guofang
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (02) : 409 - 432