A method for estimation of parameters in a neural model with noisy measurements

被引:5
|
作者
Upadhyay, Ranjit Kumar [1 ,2 ]
Mondal, Argha [2 ]
Paul, Chinmoy [2 ]
机构
[1] Isaac Newton Inst Math Sci, 20 Clarkson Rd, Cambridge CB3 OEH, England
[2] Indian Sch Mines, Dept Appl Math, Dhanbad 826004, Bihar, India
基金
英国工程与自然科学研究理事会;
关键词
Stochastic Hindmarsh-Rose neural system; Time-varying parameters; White noise; Estimation technique; HINDMARSH-ROSE MODEL; SYNAPTIC CONDUCTANCES; NEURONAL MODEL; DIFFERENTIAL-EQUATIONS; MEMBRANE VOLTAGE; CELLS; SYNCHRONIZATION; IDENTIFICATION; FLUCTUATIONS; INHIBITION;
D O I
10.1007/s11071-016-2842-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this article, we establish a method for the estimation of parameters of a three-dimensional Hindmarsh-Rose (HR) neural model under noisy environment. It has been assumed that all the parameters are unknown and are expressed as the time-varying sinusoidal functions for the membrane voltage recordings. We apply the method to present the stochastic nature of parameters, applied current and membrane voltage. The proposed method shows that the estimation procedure needs a large number of time scales for which the solution will be more accurate and it provides the relation between the parameters. The stochastic 3D HR model is used, and the mean and variances are calculated. Our analysis explains how the parameters are estimated and it helps us to select an optimal simulation procedure. The estimation procedure is also derived for a particular case when the parameters are constants instead of time-varying functions. This paper reports the application of estimation technique to experimental studies in neural computation.
引用
收藏
页码:2521 / 2533
页数:13
相关论文
共 50 条
  • [1] A method for estimation of parameters in a neural model with noisy measurements
    Ranjit Kumar Upadhyay
    Argha Mondal
    Chinmoy Paul
    Nonlinear Dynamics, 2016, 85 : 2521 - 2533
  • [2] An efficient method for the estimation of parameters of stochastic gamma process from noisy degradation measurements
    Lu, Dongliang
    Pandey, Mahesh D.
    Xie, Wei-Chau
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2013, 227 (04) : 425 - 433
  • [3] Estimation of modal decay parameters from noisy response measurements
    Karjalainen, M
    Antsalo, P
    Mäkivirta, A
    Peltonen, T
    Välimäki, V
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2002, 50 (11): : 867 - 878
  • [4] A subspace approach to estimation of autoregressive parameters from noisy measurements
    Davila, CE
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (02) : 531 - 534
  • [5] Estimation of modal decay parameters from noisy response measurements
    Karjalainen, Matti
    Antsalo, Poju
    Mäkivirta, Aki
    Peltonen, Timo
    Välimäki, Vesa
    1600, Audio Engineering Society (50): : 867 - 878
  • [6] The Novel Method of the Estimation of the Fourier Transform Based on Noisy Measurements
    Galkowski, Tomasz
    Pawlak, Miroslaw
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT II, 2017, 10246 : 52 - 61
  • [7] MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF MULTIPLE SINUSOIDS FROM NOISY MEASUREMENTS
    STOICA, P
    MOSES, RL
    FRIEDLANDER, B
    SODERSTROM, T
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (03): : 378 - 392
  • [8] Nonlinear Analysis on Transmission Line Parameters Estimation From Noisy Phasorial Measurements
    De Albuquerque, Felipe Proenca
    Marques Da Costa, Eduardo Coelho
    Ribeiro Pereira, Ronaldo Francisco
    Bartocci Liboni, Luisa Helena
    De Oliveira, Mauricio Carvalho
    IEEE ACCESS, 2022, 10 : 1720 - 1730
  • [9] Chemotherapy optimization and patient model parameter estimation based on noisy measurements
    Gergics, Borbala
    Puskas, Melania
    Kisbenedek, Lilla
    Domeny, Martin Ferenc
    Kovacs, Levente
    Drexler, Daniel Andras
    ACTA POLYTECHNICA HUNGARICA, 2024, 21 (10) : 475 - 494