Support vector machine-based assessment of the T-wave morphology improves long QT syndrome diagnosis

被引:21
作者
Hermans, Ben J. M. [1 ,2 ,3 ]
Stoks, Job [1 ,2 ,4 ]
Bennis, Frank C. [1 ,5 ]
Vink, Arja S. [6 ]
Garde, Ainara [7 ]
Wilde, Arthur A. M. [6 ]
Pison, Laurent [3 ]
Postema, Pieter G. [6 ]
Delhaas, Tammo [1 ,2 ]
机构
[1] Maastricht Univ, Dept Biomed Engn, POB 616, NL-6200 MD Maastricht, Netherlands
[2] Maastricht Univ, Cardiovasc Res Inst Maastricht CARIM, POB 616, NL-6200 MD Maastricht, Netherlands
[3] Maastricht Univ, Med Ctr, Dept Cardiol, POB 5800, NL-6202 AZ Maastricht, Netherlands
[4] Univ Twente, MIRA Inst Biomed Technol & Tech Med, POB 217, NL-7500 AE Enschede, Netherlands
[5] Maastricht Univ, MHeNS Sch Mental Hlth & Neurosci, POB 616, NL-6200 MD Maastricht, Netherlands
[6] Acad Med Ctr, Heart Ctr, Dept Clin & Expt Cardiol, POB 22660, NL-1100 DD Amsterdam, Netherlands
[7] Univ Twente, Fac EEMCS, Dept Biomed Signals & Syst, POB 217, NL-7500 AE Enschede, Netherlands
来源
EUROPACE | 2018年 / 20卷
关键词
QT-interval; T-wave; Morphology; Long QT syndrome; Machine learning; INTERVAL; REGULARIZATION;
D O I
10.1093/europace/euy243
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Diagnosing long QT syndrome (LQTS) is challenging due to a considerable overlap of the QTc-interval between LQTS patients and healthy controls. The aim of this study was to investigate the added value of T-wave morphology markers obtained from 12-lead electrocardiograms (ECGs) in diagnosing LQTS in a large cohort of genepositive LQTS patients and gene-negative family members using a support vector machine. Methods and results A retrospective study was performed including 688 digital 12-lead ECGs recorded from genotype-positive LQTS patients and genotype-negative relatives at their first visit. Two models were trained and tested equally: a baseline model with age, gender, RR-interval, QT-interval, and QTc-intervals as inputs and an extended model including morphology features as well. The best performing baseline model showed an area under the receiver-operating characteristic curve (AUC) of 0.821, whereas the extended model showed an AUC of 0.901. Sensitivity and specificity at the maximal Youden's indexes changed from 0.694 and 0.829 with the baseline model to 0.820 and 0.861 with the extended model. Compared with clinically used QTc-interval cut-off values (> 480 ms), the extended model showed a major drop in false negative classifications of LQTS patients. Conclusion The support vector machine-based extended model with T-wave morphology markers resulted in a major rise in sensitivity and specificity at the maximal Youden's index. From this, it can be concluded that T-wave morphology assessment has an added value in the diagnosis of LQTS.
引用
收藏
页码:113 / 119
页数:7
相关论文
共 24 条
  • [11] A comparison of commonly used QT correction formulae: The effect of heart rate on the QTc of normal ECGs
    Luo, S
    Michler, K
    Johnston, P
    Macfarlane, PW
    [J]. JOURNAL OF ELECTROCARDIOLOGY, 2004, 37 : 81 - 90
  • [12] Mincholé A, 2014, COMPUT CARDIOL CONF, V41, P397
  • [13] ECG T-WAVE PATTERNS IN GENETICALLY DISTINCT FORMS OF THE HEREDITARY LONG QT SYNDROME
    MOSS, AJ
    ZAREBA, W
    BENHORIN, J
    LOCATI, EH
    HALL, WJ
    ROBINSON, JL
    SCHWARTZ, PJ
    TOWBIN, JA
    VINCENT, GM
    LEHMANN, MH
    KEATING, MT
    MACCLUER, JW
    TIMOTHY, KW
    [J]. CIRCULATION, 1995, 92 (10) : 2929 - 2934
  • [14] QRS-T Angle: A Review
    Oehler, Andrew
    Feldman, Trevor
    Henrikson, Charles A.
    Tereshchenko, Larisa G.
    [J]. ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, 2014, 19 (06) : 534 - 542
  • [15] A REAL-TIME QRS DETECTION ALGORITHM
    PAN, J
    TOMPKINS, WJ
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1985, 32 (03) : 230 - 236
  • [16] Safe drug use in long QT syndrome and Brugada syndrome: comparison of website statistics
    Postema, Pieter G.
    Neville, Jon
    de Jong, Jonas S. S. G.
    Romero, Klaus
    Wilde, Arthur A. M.
    Woosley, Raymond L.
    [J]. EUROPACE, 2013, 15 (07): : 1042 - 1049
  • [17] Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes
    Priori, Silvia G.
    Wilde, Arthur A.
    Horie, Minoru
    Cho, Yongkeun
    Behr, Elijah R.
    Berul, Charles
    Blom, Nico
    Brugada, Josep
    Chiang, Chern-En
    Huikuri, Heikki
    Kannankeril, Prince
    Krahn, Andrew
    Leenhardt, Antoine
    Moss, Arthur
    Schwartz, Peter J.
    Shimizu, Wataru
    Tomaselli, Gordon
    Tracy, Cynthia
    [J]. EUROPACE, 2013, 15 (10): : 1389 - 1406
  • [18] Automated T-wave analysis can differentiate acquired QT prolongation from congenital long QT syndrome
    Sugrue, Alan
    Noseworthy, Peter A.
    Kremen, Vaclav
    Bos, J. Martijn
    Qiang, Bo
    Rohatgi, Ram K.
    Sapir, Yehu
    Attia, Zachi I.
    Brady, Peter
    Caraballo, Pedro J.
    Asirvatham, Samuel J.
    Friedman, Paul A.
    Ackerman, Michael J.
    [J]. ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, 2017, 22 (06)
  • [19] Derivation and Validation of a Simple Exercise-Based Algorithm for Prediction of Genetic Testing in Relatives of LQTS Probands
    Sy, Raymond W.
    van der Werf, Christian
    Chattha, Ishvinder S.
    Chockalingam, Priya
    Adler, Arnon
    Healey, Jeffrey S.
    Perrin, Mark
    Gollob, Michael H.
    Skanes, Allan C.
    Yee, Raymond
    Gula, Lorne J.
    Leong-Sit, Peter
    Viskin, Sami
    Klein, George J.
    Wilde, Arthur A.
    Krahn, Andrew D.
    [J]. CIRCULATION, 2011, 124 (20) : 2187 - 2194
  • [20] Interlead heterogeneity of R- and T-wavemorphology in standard 12-lead ECGs predicts sustained ventricular tachycardia/fibrillation and arrhythmic death in patients with cardiomyopathy
    Tan, Alex Y.
    Nearing, Bruce D.
    Rosenberg, Michael
    Nezafat, Reza
    Josephson, Mark E.
    Verrier, Richard L.
    [J]. JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2017, 28 (11) : 1324 - 1333