Support vector machine-based assessment of the T-wave morphology improves long QT syndrome diagnosis

被引:21
作者
Hermans, Ben J. M. [1 ,2 ,3 ]
Stoks, Job [1 ,2 ,4 ]
Bennis, Frank C. [1 ,5 ]
Vink, Arja S. [6 ]
Garde, Ainara [7 ]
Wilde, Arthur A. M. [6 ]
Pison, Laurent [3 ]
Postema, Pieter G. [6 ]
Delhaas, Tammo [1 ,2 ]
机构
[1] Maastricht Univ, Dept Biomed Engn, POB 616, NL-6200 MD Maastricht, Netherlands
[2] Maastricht Univ, Cardiovasc Res Inst Maastricht CARIM, POB 616, NL-6200 MD Maastricht, Netherlands
[3] Maastricht Univ, Med Ctr, Dept Cardiol, POB 5800, NL-6202 AZ Maastricht, Netherlands
[4] Univ Twente, MIRA Inst Biomed Technol & Tech Med, POB 217, NL-7500 AE Enschede, Netherlands
[5] Maastricht Univ, MHeNS Sch Mental Hlth & Neurosci, POB 616, NL-6200 MD Maastricht, Netherlands
[6] Acad Med Ctr, Heart Ctr, Dept Clin & Expt Cardiol, POB 22660, NL-1100 DD Amsterdam, Netherlands
[7] Univ Twente, Fac EEMCS, Dept Biomed Signals & Syst, POB 217, NL-7500 AE Enschede, Netherlands
来源
EUROPACE | 2018年 / 20卷
关键词
QT-interval; T-wave; Morphology; Long QT syndrome; Machine learning; INTERVAL; REGULARIZATION;
D O I
10.1093/europace/euy243
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Diagnosing long QT syndrome (LQTS) is challenging due to a considerable overlap of the QTc-interval between LQTS patients and healthy controls. The aim of this study was to investigate the added value of T-wave morphology markers obtained from 12-lead electrocardiograms (ECGs) in diagnosing LQTS in a large cohort of genepositive LQTS patients and gene-negative family members using a support vector machine. Methods and results A retrospective study was performed including 688 digital 12-lead ECGs recorded from genotype-positive LQTS patients and genotype-negative relatives at their first visit. Two models were trained and tested equally: a baseline model with age, gender, RR-interval, QT-interval, and QTc-intervals as inputs and an extended model including morphology features as well. The best performing baseline model showed an area under the receiver-operating characteristic curve (AUC) of 0.821, whereas the extended model showed an AUC of 0.901. Sensitivity and specificity at the maximal Youden's indexes changed from 0.694 and 0.829 with the baseline model to 0.820 and 0.861 with the extended model. Compared with clinically used QTc-interval cut-off values (> 480 ms), the extended model showed a major drop in false negative classifications of LQTS patients. Conclusion The support vector machine-based extended model with T-wave morphology markers resulted in a major rise in sensitivity and specificity at the maximal Youden's index. From this, it can be concluded that T-wave morphology assessment has an added value in the diagnosis of LQTS.
引用
收藏
页码:113 / 119
页数:7
相关论文
共 24 条
  • [1] Ackerman MJ, 2002, MAYO CLIN PROC, V77, P413
  • [2] A Robust Method for Quantification of IKr-Related T-Wave Morphology Abnormalities
    Andersen, M. P.
    Xue, J. Q.
    Graff, C.
    Hardahl, T. B.
    Toft, E.
    Kanters, J. K.
    Christiansen, M.
    Jensen, H. K.
    Struijk, J. J.
    [J]. COMPUTERS IN CARDIOLOGY 2007, VOL 34, 2007, 34 : 341 - +
  • [3] Diagnostic value of T-wave morphology changes during "QT stretching" in patients with long QT syndrome
    Chorin, Ehud
    Havakuk, Ofer
    Adler, Arnon
    Steinvil, Arie
    Rozovski, Uri
    van der Werf, Christian
    Postema, Pieter G.
    Topaz, Guy
    Wilde, Arthur A. M.
    Viskin, Sami
    Rosso, Raphael
    [J]. HEART RHYTHM, 2015, 12 (11) : 2263 - 2271
  • [4] Regularization Paths for Generalized Linear Models via Coordinate Descent
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Rob
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01): : 1 - 22
  • [5] The development and validation of an easy to use automatic QT-interval algorithm
    Hermans, Ben J. M.
    Vink, Arja S.
    Bennis, Frank C.
    Filippini, Luc H.
    Meijborg, Veronique M. F.
    Wilde, Arthur A. M.
    Pison, Laurent
    Postema, Pieter G.
    Delhaas, Tammo
    [J]. PLOS ONE, 2017, 12 (09):
  • [6] T-wave morphology can distinguish healthy controls from LQTS patients
    Immanuel, S. A.
    Sadrieh, A.
    Baumert, M.
    Couderc, J. P.
    Zareba, W.
    Hill, A. P.
    Vandenberg, J. I.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2016, 37 (09) : 1456 - 1473
  • [7] James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1
  • [8] Epinephrine-induced T-wave notching in congenital long QT syndrome
    Khositseth, A
    Hejlik, J
    Shen, WK
    Ackerman, MJ
    [J]. HEART RHYTHM, 2005, 2 (02) : 141 - 146
  • [9] RECONSTRUCTION OF THE FRANK VECTORCARDIOGRAM FROM STANDARD ELECTROCARDIOGRAPHIC LEADS - DIAGNOSTIC COMPARISON OF DIFFERENT METHODS
    KORS, JA
    VANHERPEN, G
    SITTIG, AC
    VANBEMMEL, JH
    [J]. EUROPEAN HEART JOURNAL, 1990, 11 (12) : 1083 - 1092
  • [10] T-WAVE HUMPS AS A POTENTIAL ELECTROCARDIOGRAPHIC MARKER OF THE LONG QT SYNDROME
    LEHMANN, MH
    SUZUKI, F
    FROMM, BS
    FRANKOVICH, D
    ELKO, P
    STEINMAN, RT
    FRESARD, J
    BAGA, JJ
    TAGGART, T
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1994, 24 (03) : 746 - 754