Multiscale Simulation of 2D Elastic Wave Propagation

被引:0
作者
Zhang, Wensheng [1 ]
Zheng, Hui [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015) | 2016年 / 1738卷
关键词
Elastic wave equation; multiscale; wave propagation; finite volume; finite element; numerical simulation; EQUATION; MEDIA;
D O I
10.1063/1.4952364
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop the multiscale method for simulation of elastic wave propagation. Based on the first-order velocity-stress hyperbolic form of 2D elastic wave equation, the particle velocities are solved first on a coarse grid by the finite volume method. Then the stress tensor is solved by using the multiscale basis functions which can represent the fine-scale variation of the wavefield on the coarse grid. The basis functions are computed by solving a local problem with the finite element method. The theoretical formulae and description of the multiscale method for elastic wave equation are given in more detail. The numerical computations for an inhomogeneous model with random scatter are completed. The results show the effectiveness of the multiscale method.
引用
收藏
页数:4
相关论文
共 7 条
  • [1] FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR THE WAVE EQUATION
    Abdulle, Assyr
    Grote, Marcus J.
    [J]. MULTISCALE MODELING & SIMULATION, 2011, 9 (02) : 766 - 792
  • [2] Multiscale modeling of acoustic wave propagation in 2D media
    Gibson, Richard L., Jr.
    Gao, Kai
    Chung, Eric
    Efendiev, Yalchin
    [J]. GEOPHYSICS, 2014, 79 (02) : T61 - T75
  • [3] A multiscale finite element method for elliptic problems in composite materials and porous media
    Hou, TY
    Wu, XH
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 134 (01) : 169 - 189
  • [4] A matrix analysis of operator-based upscaling for the wave equation
    Korostyshevskaya, Oksana
    Minkoff, Susan E.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) : 586 - 612
  • [5] Vdovina T, 2008, INT J NUMER ANAL MOD, V5, P543
  • [6] Operator upscaling for the acoustic wave equation
    Vdovina, T
    Minkoff, SE
    Korostyshevskaya, O
    [J]. MULTISCALE MODELING & SIMULATION, 2005, 4 (04) : 1305 - 1338
  • [7] A TWO-SCALE SOLUTION ALGORITHM FOR THE ELASTIC WAVE EQUATION
    Vdovina, Tetyana
    Minkoff, Susan E.
    Griffith, Sean M. L.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05) : 3356 - 3386