Exponential independence

被引:2
|
作者
Jaeger, Simon [1 ]
Rautenbach, Dieter [1 ]
机构
[1] Ulm Univ, Inst Optimizat & Operat Res, Ulm, Germany
关键词
Independence; Exponential independence; Exponential domination; PACKING; DOMINATION; NUMBERS; TREES;
D O I
10.1016/j.disc.2016.10.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a set S of vertices of a graph G, a vertex u in V(G)\S, and a vertex v in S, let dist((G,S))(u, v) be the distance of u and v in the graph G - (S \ {v}). Dankelmann et al. (2009) define S to be an exponential dominating set of G if w((G,S))(u) >= 1 for every vertex u in V(G) \ S, where w((G,S))(u) = Sigma(v is an element of S)(1/2) dist((G,S))((u,v)-1). Inspired by this notion, we define S to be an exponential independent set of G if w((G,S\{u}))(u) < 1for every vertex u in S, and the exponential independence number alpha(e)(G) of G as the maximum order of an exponential independent set of G. Similarly as for exponential domination, the non-local nature of exponential independence leads to many interesting effects and challenges. Our results comprise exact values for special graphs as well as tight bounds and the corresponding extremal graphs. Furthermore, we characterize all graphs G for which alpha(e)(H) equals the independence number a(H) for every induced subgraph H of G, and we give an explicit characterization of all trees T with alpha(e)(T) = alpha(T). (C)2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2650 / 2658
页数:9
相关论文
共 50 条
  • [1] Exponential independence in subcubic graphs
    Bessy, Stephane
    Pardey, Johannes
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [2] Exponential Independence Number of Some Graphs
    Ciftci, Canan
    Aytac, Aysun
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (07) : 1151 - 1164
  • [3] Independence of additive, multiplicative, exponential and logarithmic functions
    Ponpetch, Kanet
    Laohakosol, Vichian
    Mavecha, Sukrawan
    AEQUATIONES MATHEMATICAE, 2019, 93 (05) : 875 - 904
  • [4] Independence of additive, multiplicative, exponential and logarithmic functions
    Kanet Ponpetch
    Vichian Laohakosol
    Sukrawan Mavecha
    Aequationes mathematicae, 2019, 93 : 875 - 904
  • [5] Relating broadcast independence and independence
    Bessy, S.
    Rautenbach, D.
    DISCRETE MATHEMATICS, 2019, 342 (12)
  • [6] Relating domination, exponential domination, and porous exponential domination
    Henning, Michael A.
    Jaeger, Simon
    Rautenbach, Dieter
    DISCRETE OPTIMIZATION, 2017, 23 : 81 - 92
  • [7] On the Broadcast Independence Number of Locally Uniform 2-Lobsters
    Ahmane, Messaouda
    Bouchemakh, Isma
    Sopena, Eric
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (01) : 199 - 229
  • [8] On the broadcast independence number of caterpillars
    Ahmane, Messaouda
    Bouchemakh, Isma
    Sopena, Eric
    DISCRETE APPLIED MATHEMATICS, 2018, 244 : 20 - 35
  • [9] Exponential Domination in Subcubic Graphs
    Bessy, Stephane
    Ochem, Pascal
    Rautenbach, Dieter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (04)
  • [10] Bounds on the exponential domination number
    Bessy, Stephane
    Ochem, Pascal
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2017, 340 (03) : 494 - 503