Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems*

被引:56
|
作者
Migorski, Stanislaw [1 ,4 ]
Khan, Akhtar A. [3 ]
Zeng, Shengda [2 ,4 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
[3] Rochester Inst Technol, Sch Math Sci, Ctr Appl & Computat Math, 85 Lomb Mem Dr, Rochester, NY 14623 USA
[4] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
inverse problem; nonlinear quasi-hemivariational inequality; clarke subgradient; regularization; p-Laplacian; boundary value problem; VARIATIONAL-INEQUALITIES; EQUILIBRIUM PROBLEMS; NUMERICAL-ANALYSIS; IDENTIFICATION; REGULARIZATION; FRICTION; DRIVEN;
D O I
10.1088/1361-6420/ab44d7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to studying an inverse problem of parameter identification in a nonlinear quasi-hemivariational inequality posed in a Banach space. We employ the Kluge's fixed point theorem for the set-valued selection map, use the Minty approach and some properties of the Clarke subgradient to prove that the quasi-hemivariational inequality associated to the inverse problem has a nonempty, bounded, and weakly compact solution set. We develop a general regularization framework to provide an existence result for the inverse problem. As an illustrative application, we study an identification inverse problem in a complicated mixed elliptic boundary value problem with p -Laplace operator and an implicit obstacle.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Inverse problems for multi-valued quasi variational inequalities and noncoercive variational inequalities with noisy data
    Khan, Akhtar A.
    Migorski, Stanislaw
    Sama, Miguel
    OPTIMIZATION, 2019, 68 (10) : 1897 - 1931
  • [22] A greedy algorithm for nonlinear inverse problems with an application to nonlinear inverse gravimetry
    Kontak M.
    Michel V.
    GEM - International Journal on Geomathematics, 2018, 9 (02) : 167 - 198
  • [23] The forward and inverse problems for a fractional boundary value problem
    Feng, Yaqin
    Graef, John R.
    Kong, Lingju
    Wang, Min
    APPLICABLE ANALYSIS, 2018, 97 (14) : 2474 - 2484
  • [24] Discrete Fractional Boundary Value Problems and Inequalities
    Martin Bohner
    Nick Fewster-Young
    Fractional Calculus and Applied Analysis, 2021, 24 : 1777 - 1796
  • [25] DISCRETE FRACTIONAL BOUNDARY VALUE PROBLEMS AND INEQUALITIES
    Bohner, Martin
    Fewster-Young, Nick
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (06) : 1777 - 1796
  • [26] Mixed boundary value problems for fully nonlinear degenerate or singular equations
    Birindelli, Isabeau
    Demengel, Francoise
    Leoni, Fabiana
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 223
  • [27] Long-time behavior of delay differential quasi-variational-hemivariational inequalities and application to contact problems
    Anh, Nguyen Thi Van
    Thuy, Tran Van
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [28] Boundary optimal control for nonlinear antiplane problems
    Matei, Andaluzia
    Micu, Sorin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) : 1641 - 1652
  • [29] Direct and inverse boundary value problems for models of stationary reaction–convection–diffusion
    A. I. Korotkii
    Yu. V. Starodubtseva
    Proceedings of the Steklov Institute of Mathematics, 2015, 291 : 96 - 112
  • [30] STABILITY OF PARAMETRIC TIME DEPENDENT AND DYNAMICAL EQUILIBRIUM PROBLEMS: APPLICATION TO HEMIVARIATIONAL INEQUALITIES
    Mansour, Mohamed Ait
    Mazgouri, Zakaria
    Riahi, Hassan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (03) : 605 - 628