Percolation-like transition in DLA with two species

被引:4
|
作者
Debierre, JM
Albinet, G
机构
[1] UNIV AIX MARSEILLE 1,FAC SCI & TECH ST JEROME,INST RECH PHENOMENES HORS EQUILIBRE,F-13397 MARSEILLE 20,FRANCE
[2] UNIV AIX MARSEILLE 2,FAC SCI & TECH ST JEROME,INST RECH PHENOMENES HORS EQUILIBRE,F-13397 MARSEILLE 20,FRANCE
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 09期
关键词
D O I
10.1088/0305-4470/29/9/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a DLA model with two species in order to simulate the growth of alternate clusters. We perform intensive numerical simulations in two dimensions in which the proportions of the two species are varied. A critical point, analogous to a percolation threshold, is found and a new class of critical exponents is obtained for this transition. Within numerical accuracy, the fractal dimension of the clusters is found to be the same as in the usual DLA model, independent of the species concentrations. Possible connections with the growth of two-dimensional ionic crystals are discussed.
引用
收藏
页码:1905 / 1913
页数:9
相关论文
共 50 条
  • [31] Percolation approach to the metal-insulator transition in two dimensions
    Meir, Y
    ELECTRONIC CORRELATIONS: FROM MESO- TO NANO-PHYSICS, 2001, : 221 - 224
  • [32] SHARPNESS OF THE PERCOLATION TRANSITION IN THE TWO-DIMENSIONAL CONTACT PROCESS
    van den Berg, J.
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (01): : 374 - 395
  • [33] Percolation in two-species antagonistic random sequential adsorption in two dimensions
    Martins, Paulo H. L.
    Dickman, Ronald
    Ziff, Robert M.
    PHYSICAL REVIEW E, 2023, 107 (02)
  • [34] IS THERE A PHASE-TRANSITION IN THE MULTIFRACTAL SPECTRUM OF DLA
    LEE, J
    ALSTROM, P
    STANLEY, HE
    FRACTALS PHYSICAL ORIGIN AND PROPERTIES, 1989, 45 : 217 - 226
  • [35] The Problem of Phase Transition In Drift-DLA
    Fuxuan CHANG
    CommunicationsinNonlinearScience&NumericalSimulation, 1998, (01) : 3 - 5
  • [36] The problem of phase transition in drift-DLA
    Chang, Fuxuan
    Li, Houqiang
    Liu, De
    Lin, Libin
    Communications in Nonlinear Science and Numerical Simulation, 1998, 3 (01): : 44 - 49
  • [37] Percolation transition in a two-dimensional system of Ni granular ferromagnets
    Strelniker, YM
    Berkovits, R
    Frydman, A
    Havlin, S
    PHYSICAL REVIEW E, 2004, 69 (06):
  • [38] Disruption of microbial communication yields a two-dimensional percolation transition
    Silva, Kalinga Pavan T.
    Yusufaly, Tahir, I
    Chellamuthu, Prithiviraj
    Boedicker, James Q.
    PHYSICAL REVIEW E, 2019, 99 (04)
  • [39] Percolation transition in two dimensional electron gas: A cellular automaton model
    Najafi, M. N.
    SOLID STATE COMMUNICATIONS, 2018, 284 : 84 - 87
  • [40] Percolation transition in two-dimensional +/-J Ising spin glasses
    Imaoka, H
    Ikeda, B
    Kasai, Y
    PHYSICA A, 1997, 246 (1-2): : 18 - 26