Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides

被引:424
作者
Braun, Jeffrey L. [1 ]
Rost, Christina M. [1 ]
Lim, Mina [2 ]
Giri, Ashutosh [1 ]
Olson, David H. [1 ]
Kotsonis, George N. [2 ,3 ]
Stan, Gheorghe [4 ]
Brenner, Donald W. [2 ]
Maria, Jon-Paul [2 ,3 ]
Hopkins, Patrick E. [1 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[2] North Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA
[3] Penn State Univ, Mat Sci & Engn, University Pk, PA 16802 USA
[4] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
entropy-stabilized; high-entropy alloys; high-entropy ceramics; thermal conductivity; BARRIER; ALLOYS; MICROSTRUCTURE; TEMPERATURE; EXAFS; LIMIT;
D O I
10.1002/adma.201805004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manipulating a crystalline material's configurational entropy through the introduction of unique atomic species can produce novel materials with desirable mechanical and electrical properties. From a thermal transport perspective, large differences between elemental properties such as mass and interatomic force can reduce the rate at which phonons carry heat and thus reduce the thermal conductivity. Recent advances in materials synthesis are enabling the fabrication of entropy-stabilized ceramics, opening the door for understanding the implications of extreme disorder on thermal transport. Measuring the structural, mechanical, and thermal properties of single-crystal entropy-stabilized oxides, it is shown that local ionic charge disorder can effectively reduce thermal conductivity without compromising mechanical stiffness. These materials demonstrate similar thermal conductivities to their amorphous counterparts, in agreement with the theoretical minimum limit, resulting in this class of material possessing the highest ratio of elastic modulus to thermal conductivity of any isotropic crystal.
引用
收藏
页数:8
相关论文
共 52 条
[41]  
Suzuki I., 1975, Journal of Physics of the Earth, V23, P145, DOI 10.4294/jpe1952.23.145
[42]   Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization [J].
Tsai, Ming-Hung ;
Wang, Chun-Wen ;
Tsai, Che-Wei ;
Shen, Wan-Jui ;
Yeh, Jien-Wei ;
Gan, Jon-Yiew ;
Wu, Wen-Wei .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (11) :H1161-H1165
[43]   On the elemental effect of AlCoCrCuFeNi high-entropy alloy system [J].
Tung, Chung-Chin ;
Yeh, Jien-Wei ;
Shun, Tao-tsung ;
Chen, Swe-Kai ;
Huang, Yuan-Sheng ;
Chen, Hung-Cheng .
MATERIALS LETTERS, 2007, 61 (01) :1-5
[44]   Zirconates as new materials for thermal barrier coatings [J].
Vassen, R ;
Cao, XQ ;
Tietz, F ;
Basu, D ;
Stöver, D .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2000, 83 (08) :2023-2028
[45]   XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxide catalysts [J].
Velu, S ;
Suzuki, K ;
Gopinath, CS ;
Yoshida, H ;
Hattori, T .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (10) :1990-1999
[46]   Ultralow thermal conductivity of fullerene derivatives [J].
Wang, Xiaojia ;
Liman, Christopher D. ;
Treat, Neil D. ;
Chabinyc, Michael L. ;
Cahill, David G. .
PHYSICAL REVIEW B, 2013, 88 (07)
[47]   Invited Article: Micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance [J].
Wei, Changdong ;
Zheng, Xuan ;
Cahill, David G. ;
Zhao, Ji-Cheng .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (07)
[48]   Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects [J].
Yan, Jianlong ;
Liu, Fusheng ;
Ma, Guohua ;
Gong, Bo ;
Zhu, Jiaxu ;
Wang, Xiao ;
Ao, Weiqin ;
Zhang, Chaohua ;
Li, Yu ;
Li, Junqin .
SCRIPTA MATERIALIA, 2018, 157 :129-134
[49]   Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J].
Yeh, JW ;
Chen, SK ;
Lin, SJ ;
Gan, JY ;
Chin, TS ;
Shun, TT ;
Tsau, CH ;
Chang, SY .
ADVANCED ENGINEERING MATERIALS, 2004, 6 (05) :299-303
[50]   The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting [J].
Zhai, Shang ;
Rojas, Jimmy ;
Ahlborg, Nadia ;
Lim, Kipil ;
Toney, Michael F. ;
Jin, Hyungyu ;
Chueh, William C. ;
Majumdar, Arun .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (08) :2172-2178