Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides

被引:424
作者
Braun, Jeffrey L. [1 ]
Rost, Christina M. [1 ]
Lim, Mina [2 ]
Giri, Ashutosh [1 ]
Olson, David H. [1 ]
Kotsonis, George N. [2 ,3 ]
Stan, Gheorghe [4 ]
Brenner, Donald W. [2 ]
Maria, Jon-Paul [2 ,3 ]
Hopkins, Patrick E. [1 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[2] North Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA
[3] Penn State Univ, Mat Sci & Engn, University Pk, PA 16802 USA
[4] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
entropy-stabilized; high-entropy alloys; high-entropy ceramics; thermal conductivity; BARRIER; ALLOYS; MICROSTRUCTURE; TEMPERATURE; EXAFS; LIMIT;
D O I
10.1002/adma.201805004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manipulating a crystalline material's configurational entropy through the introduction of unique atomic species can produce novel materials with desirable mechanical and electrical properties. From a thermal transport perspective, large differences between elemental properties such as mass and interatomic force can reduce the rate at which phonons carry heat and thus reduce the thermal conductivity. Recent advances in materials synthesis are enabling the fabrication of entropy-stabilized ceramics, opening the door for understanding the implications of extreme disorder on thermal transport. Measuring the structural, mechanical, and thermal properties of single-crystal entropy-stabilized oxides, it is shown that local ionic charge disorder can effectively reduce thermal conductivity without compromising mechanical stiffness. These materials demonstrate similar thermal conductivities to their amorphous counterparts, in agreement with the theoretical minimum limit, resulting in this class of material possessing the highest ratio of elastic modulus to thermal conductivity of any isotropic crystal.
引用
收藏
页数:8
相关论文
共 52 条
[21]  
Keem J. M., 1978, 52 CINDAS
[22]   AN EXAFS STUDY OF INTERIONIC DISTANCES IN COMPLEX LANTHANIDE OXIDES [J].
KNAPP, GS ;
NEVITT, MV ;
ALDRED, AT ;
KLIPPERT, TK .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1985, 46 (11) :1321-1325
[23]   Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method [J].
Liu, Jun ;
Zhu, Jie ;
Tian, Miao ;
Gu, Xiaokun ;
Schmidt, Aaron ;
Yang, Ronggui .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (03)
[24]   Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials [J].
Liu, Ruiheng ;
Chen, Hongyi ;
Zhao, Kunpeng ;
Qin, Yuting ;
Jiang, Binbin ;
Zhang, Tiansong ;
Sha, Gang ;
Shi, Xun ;
Uher, Ctirad ;
Zhang, Wenqing ;
Chen, Lidong .
ADVANCED MATERIALS, 2017, 29 (38)
[25]   Thermal expansion and enhanced heat transfer in high-entropy alloys [J].
Lu, Chieh-Lien ;
Lu, Sheng-Yi ;
Yeh, Jien-Wei ;
Hsu, Wen-Kuang .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2013, 46 :736-739
[26]  
Ma J, 2013, NAT NANOTECHNOL, V8, P445, DOI [10.1038/NNANO.2013.95, 10.1038/nnano.2013.95]
[27]   Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors [J].
Morelli, D. T. ;
Jovovic, V. ;
Heremans, J. P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (03)
[28]   IFEFFIT: interactive XAFS analysis and FEFF fitting [J].
Newville, M .
JOURNAL OF SYNCHROTRON RADIATION, 2001, 8 (02) :322-324
[29]  
Ong WL, 2017, NAT MATER, V16, P83, DOI [10.1038/nmat4739, 10.1038/NMAT4739]
[30]   Materials science - Thermal barrier coatings for gas-turbine engine applications [J].
Padture, NP ;
Gell, M ;
Jordan, EH .
SCIENCE, 2002, 296 (5566) :280-284