Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides

被引:424
作者
Braun, Jeffrey L. [1 ]
Rost, Christina M. [1 ]
Lim, Mina [2 ]
Giri, Ashutosh [1 ]
Olson, David H. [1 ]
Kotsonis, George N. [2 ,3 ]
Stan, Gheorghe [4 ]
Brenner, Donald W. [2 ]
Maria, Jon-Paul [2 ,3 ]
Hopkins, Patrick E. [1 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[2] North Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA
[3] Penn State Univ, Mat Sci & Engn, University Pk, PA 16802 USA
[4] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
entropy-stabilized; high-entropy alloys; high-entropy ceramics; thermal conductivity; BARRIER; ALLOYS; MICROSTRUCTURE; TEMPERATURE; EXAFS; LIMIT;
D O I
10.1002/adma.201805004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manipulating a crystalline material's configurational entropy through the introduction of unique atomic species can produce novel materials with desirable mechanical and electrical properties. From a thermal transport perspective, large differences between elemental properties such as mass and interatomic force can reduce the rate at which phonons carry heat and thus reduce the thermal conductivity. Recent advances in materials synthesis are enabling the fabrication of entropy-stabilized ceramics, opening the door for understanding the implications of extreme disorder on thermal transport. Measuring the structural, mechanical, and thermal properties of single-crystal entropy-stabilized oxides, it is shown that local ionic charge disorder can effectively reduce thermal conductivity without compromising mechanical stiffness. These materials demonstrate similar thermal conductivities to their amorphous counterparts, in agreement with the theoretical minimum limit, resulting in this class of material possessing the highest ratio of elastic modulus to thermal conductivity of any isotropic crystal.
引用
收藏
页数:8
相关论文
共 52 条
[1]   LATTICE THERMAL CONDUCTIVITY OF DISORDERED SEMICONDUCTOR ALLOYS AT HIGH TEMPERATURES [J].
ABELES, B .
PHYSICAL REVIEW, 1963, 131 (05) :1906-&
[2]   Inorganic Crystals with Glass-Like and Ultralow Thermal Conductivities [J].
Beekman, Matt ;
Cahill, David G. .
CRYSTAL RESEARCH AND TECHNOLOGY, 2017, 52 (10)
[3]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[4]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[5]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[6]  
Calvin Scott, 2013, XAFS EVERYONE, DOI DOI 10.1201/B14843
[7]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[8]   Ballistic transport of long wavelength phonons and thermal conductivity accumulation in nanograined silicon-germanium alloys [J].
Chen, Long ;
Braun, Jeffrey L. ;
Donovan, Brian F. ;
Hopkins, Patrick E. ;
Poon, S. Joseph .
APPLIED PHYSICS LETTERS, 2017, 111 (13)
[9]   Ultralow thermal conductivity in disordered, layered WSe2 crystals [J].
Chiritescu, Catalin ;
Cahill, David G. ;
Nguyen, Ngoc ;
Johnson, David ;
Bodapati, Arun ;
Keblinski, Pawel ;
Zschack, Paul .
SCIENCE, 2007, 315 (5810) :351-353
[10]   Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤2) high-entropy alloys [J].
Chou, Hsuan-Ping ;
Chang, Yee-Shyi ;
Chen, Swe-Kai ;
Yeh, Jien-Wei .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 163 (03) :184-189