Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites

被引:40
作者
Hosseinzadeh, Parisa [1 ,6 ]
Watson, Paris R. [2 ]
Craven, Timothy W. [1 ]
Li, Xinting [1 ]
Rettie, Stephen [1 ,3 ]
Pardo-Avila, Fatima [4 ]
Bera, Asim K. [1 ]
Mulligan, Vikram Khipple [1 ,7 ]
Lu, Peilong [1 ,8 ]
Ford, Alexander S. [1 ]
Weitzner, Brian D. [1 ,9 ]
Stewart, Lance J. [1 ]
Moyer, Adam P. [1 ,5 ]
Di Piazza, Maddalena [1 ]
Whalen, Joshua G. [1 ]
Greisen, Per, Jr. [1 ,10 ]
Christianson, David W. [2 ]
Baker, David [1 ]
机构
[1] Univ Washington, Dept Biochem, Inst Prot Design, Seattle, WA 98195 USA
[2] Univ Penn, Dept Chem, Roy & Diana Vagelos Labs, Philadelphia, PA 19104 USA
[3] Univ Washington, Mol & Cellular Biol PhD Program, Seattle, WA 98195 USA
[4] Stanford Univ, Sch Med, Dept Struct Biol, Stanford, CA 94305 USA
[5] Univ Washington, Mol Engn PhD Program, Seattle, WA 98195 USA
[6] Univ Oregon, Knight Campus Ctr, Eugene, OR 97403 USA
[7] Flatiron Inst, Ctr Computat Biol, Syst Biol, New York, NY USA
[8] Westlake Univ, Sch Life Sci, Key Lab Struct Biol Zhejiang Prov, Hangzhou, Zhejiang, Peoples R China
[9] Lyell & Immunopharma Inc, Seattle, WA USA
[10] Novo Nordisk AS, Malov, Denmark
关键词
HISTONE DEACETYLASE INHIBITORS; COMPUTATIONAL DESIGN; MOLECULAR-DYNAMICS; BINDING; DISCOVERY; MOLPROBITY; ALGORITHM; MECHANISM; LARGAZOLE; LIGANDS;
D O I
10.1038/s41467-021-23609-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite recent success in computational design of structured cyclic peptides, de novo design of cyclic peptides that bind to any protein functional site remains difficult. To address this challenge, we develop a computational "anchor extension" methodology for targeting protein interfaces by extending a peptide chain around a non-canonical amino acid residue anchor. To test our approach using a well characterized model system, we design cyclic peptides that inhibit histone deacetylases 2 and 6 (HDAC2 and HDAC6) with enhanced potency compared to the original anchor (IC50 values of 9.1 and 4.4 nM for the best binders compared to 5.4 and 0.6 mu M for the anchor, respectively). The HDAC6 inhibitor is among the most potent reported so far. These results highlight the potential for de novo design of high-affinity protein-peptide interfaces, as well as the challenges that remain. Cyclic peptides are of particular interest due to their pharmacological properties, but their design for binding to a target protein is challenging. Here, the authors present a computational "anchor extension" methodology for de novo design of cyclic peptides that bind to the target protein with high affinity, and validate the approach by developing cyclic peptides that inhibit histone deacetylases 2 and 6.
引用
收藏
页数:12
相关论文
共 81 条
  • [1] Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
    Abraham, Mark James
    Murtola, Teemu
    Schulz, Roland
    Páll, Szilárd
    Smith, Jeremy C.
    Hess, Berk
    Lindah, Erik
    [J]. SoftwareX, 2015, 1-2 : 19 - 25
  • [2] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [3] Bound Water at Protein-Protein Interfaces: Partners, Roles and Hydrophobic Bubbles as a Conserved Motif
    Ahmed, Mostafa H.
    Spyrakis, Francesca
    Cozzini, Pietro
    Tripathi, Parijat K.
    Mozzarelli, Andrea
    Scarsdale, J. Neel
    Safo, Martin A.
    Kellogg, Glen E.
    [J]. PLOS ONE, 2011, 6 (09):
  • [4] Docking of Macrocycles: Comparing Rigid and Flexible Docking in Glide
    Alogheli, Hiba
    Olanders, Gustav
    Schaal, Wesley
    Brandt, Peter
    Karlen, Anders
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (02) : 190 - 202
  • [5] DynaDock: A new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility
    Antes, Iris
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2010, 78 (05) : 1084 - 1104
  • [6] Use of Peptide Libraries for Identification and Optimization of Novel Antimicrobial Peptides
    Ashby, Martin
    Petkova, Asya
    Gani, Jurnorain
    Mikut, Ralf
    Hilpert, Kai
    [J]. CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2017, 17 (05) : 537 - 553
  • [7] Bartlett GJ, 2010, NAT CHEM BIOL, V6, P615, DOI [10.1038/NCHEMBIO.406, 10.1038/nchembio.406]
  • [8] iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM
    Battye, T. Geoff G.
    Kontogiannis, Luke
    Johnson, Owen
    Powell, Harold R.
    Leslie, Andrew G. W.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2011, 67 : 271 - 281
  • [9] MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH
    BERENDSEN, HJC
    POSTMA, JPM
    VANGUNSTEREN, WF
    DINOLA, A
    HAAK, JR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) : 3684 - 3690
  • [10] Accurate de novo design of hyperstable constrained peptides
    Bhardwaj, Gaurav
    Mulligan, Vikram Khipple
    Bahl, Christopher D.
    Gilmore, Jason M.
    Harvey, Peta J.
    Cheneval, Olivier
    Buchko, Garry W.
    Pulavarti, Surya V. S. R. K.
    Kaas, Quentin
    Eletsky, Alexander
    Huang, Po-Ssu
    Johnsen, William A.
    Greisen, Per Jr
    Rocklin, Gabriel J.
    Song, Yifan
    Linsky, Thomas W.
    Watkins, Andrew
    Rettie, Stephen A.
    Xu, Xianzhong
    Carter, Lauren P.
    Bonneau, Richard
    Olson, James M.
    Coutsias, Evangelos
    Correnti, Colin E.
    Szyperski, Thomas
    Craik, David J.
    Baker, David
    [J]. NATURE, 2016, 538 (7625) : 329 - +