Equivalence of Certain Iteration Processes Obtained by Two New Classes of Operators

被引:11
作者
Abbas, Mujahid [1 ,2 ]
Anjum, Rizwan [3 ]
Berinde, Vasile [4 ,5 ]
机构
[1] Govt Coll Univ, Dept Math, Katchery Rd, Lahore 54000, Pakistan
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore 54600, Pakistan
[4] Tech Univ Cluj Napoca, North Univ Ctr, Dept Math & Comp Sci, Baia Mare 430122, Romania
[5] Acad Romanian Sci, Ilfov Str 3, Bucharest 50044, Romania
关键词
fixed point; Ishikawa iteration; Mann iteration; Krasnoselskij iteration; MANN ITERATIONS; POINT THEOREMS; FIXED-POINTS; CONTRACTIONS; CONVERGENCES; ISHIKAWA;
D O I
10.3390/math9182292
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is two fold: the first is to define two new classes of mappings and show the existence and iterative approximation of their fixed points; the second is to show that the Ishikawa, Mann, and Krasnoselskij iteration methods defined for such classes of mappings are equivalent. An application of the main results to solve split feasibility and variational inequality problems are also given.
引用
收藏
页数:15
相关论文
共 26 条
  • [1] Abbas M., 2022, CHAOS SOLITONS FRACT, V154
  • [2] Enriched Multivalued Contractions with Applications to Differential Inclusions and Dynamic Programming
    Abbas, Mujahid
    Anjum, Rizwan
    Berinde, Vasile
    [J]. SYMMETRY-BASEL, 2021, 13 (08):
  • [3] Berinde V., 2019, 190903494 ARXIV
  • [4] Berinde V, 2007, LECT NOTES MATH, V1912, P1
  • [5] Fixed point theorems for enriched Ciric-Reich-Rus contractions in Banach spaces and convex metric spaces
    Berinde, Vasile
    Pacurar, Madalina
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (02) : 173 - 184
  • [6] Kannan's fixed point approximation for solving split feasibility and variational inequality problems
    Berinde, Vasile
    Pacurar, Madalina
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 386
  • [7] Approximating fixed points of enriched contractions in Banach spaces
    Berinde, Vasile
    Pacurar, Madalina
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (02)
  • [8] Berinde V, 2019, CARPATHIAN J MATH, V35, P293
  • [9] SOLUTION BY ITERATION OF NONLINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES
    BROWDER, FE
    PETRYSHYN, WV
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (03) : 571 - +
  • [10] A unified treatment of some iterative algorithms in signal processing and image reconstruction
    Byrne, C
    [J]. INVERSE PROBLEMS, 2004, 20 (01) : 103 - 120