BaBi2O6: A Promising n-Type Thermoelectric Oxide with the PbSb2O6 Crystal Structure

被引:28
作者
Spooner, Kieran B. [1 ,2 ]
Ganose, Alex M. [2 ,3 ,4 ]
Leung, W. W. Winnie [1 ]
Buckeridge, John [1 ,5 ]
Williamson, Benjamin A. D. [6 ]
Palgrave, Robert G. [1 ]
Scanlon, David O. [1 ,2 ,4 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] UCL, Thomas Young Ctr, London WC1E 6BT, England
[3] Imperial Coll London, Dept Mat, South Kensington Campus, London SW7 2AZ, England
[4] Diamond Light Source Ltd, Diamond House,Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England
[5] London South Bank Univ, Sch Engn, London SE1 0AA, England
[6] Norwegian Univ Sci & Technol NTNU, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
基金
英国工程与自然科学研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; THERMAL-CONDUCTIVITY; OPTOELECTRONIC PROPERTIES; FORCE-CONSTANTS; POINT-DEFECTS; PHONON-GLASS; THIN-FILMS; DOPED ZNO; PERFORMANCE; FIGURE;
D O I
10.1021/acs.chemmater.1c02164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermoelectric materials offer the possibility of enhanced energy efficiency due to waste heat scavenging. Based on their high-temperature stability and ease of synthesis, efficient oxide-based thermoelectrics remain a tantalizing research goal; however, their current performance is significantly lower than the industry standards such as Bi2Te3 and PbTe. Among the oxide thermoelectrics studied thus far, the development of n-type thermoelectric oxides has fallen behind that of p-type oxides, primarily due to limitations on the overall dimensionless figure of merit, or ZT, by large lattice thermal conductivities. In this article, we propose a simple strategy based on chemical intuition to discover enhanced n-type oxide thermoelectrics. Using state-of-the-art calculations, we demonstrate that the PbSb2O6-structured BaBi2O6 represents a novel structural motif for thermoelectric materials, with a predicted ZT of 0.17-0.19. We then suggest two methods to enhance the ZT up to 0.22, on par with the current best earth-abundant n-type thermoelectric at around 600 K, SrTiO3, which has been much more heavily researched. Our analysis of the factors that govern the electronic and phononic scattering in this system provides a blueprint for optimizing ZT beyond the perfect crystal approximation.
引用
收藏
页码:7441 / 7456
页数:16
相关论文
共 106 条
[1]   Intrinsic n-Type Behavior in Transparent Conducting Oxides: A Comparative Hybrid-Functional Study of In2O3, SnO2, and ZnO [J].
Agoston, Peter ;
Albe, Karsten ;
Nieminen, Risto M. ;
Puska, Martti J. .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)
[2]  
Basso R, 1996, EUR J MINERAL, V8, P487
[3]   In2O3:Ge, a promising n-type thermoelectric oxide composite [J].
Berardan, David ;
Guilmeau, Emmanuel ;
Maignan, Antoine ;
Raveau, Bernard .
SOLID STATE COMMUNICATIONS, 2008, 146 (1-2) :97-101
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]  
Bradley C., 2009, The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups
[7]   Equilibrium point defect and charge carrier concentrations in a material determined through calculation of the self-consistent Fermi energy [J].
Buckeridge, J. .
COMPUTER PHYSICS COMMUNICATIONS, 2019, 244 :329-342
[8]   Deep vs shallow nature of oxygen vacancies and consequent n-type carrier concentrations in transparent conducting oxides [J].
Buckeridge, J. ;
Catlow, C. R. A. ;
Farrow, M. R. ;
Logsdail, A. J. ;
Scanlon, D. O. ;
Keal, T. W. ;
Sherwood, P. ;
Woodley, S. M. ;
Sokol, A. A. ;
Walsh, A. .
PHYSICAL REVIEW MATERIALS, 2018, 2 (05)
[9]   Nonstoichiometry and Weyl fermionic behavior in TaAs [J].
Buckeridge, J. ;
Jevdokimovs, D. ;
Catlow, C. R. A. ;
Sokol, A. A. .
PHYSICAL REVIEW B, 2016, 94 (18)
[10]   Automated procedure to determine the thermodynamic stability of a material and the range of chemical potentials necessary for its formation relative to competing phases and compounds [J].
Buckeridge, J. ;
Scanlon, D. O. ;
Walsh, A. ;
Catlow, C. R. A. .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (01) :330-338