An axiomatic characterization of a value for games in partition function form

被引:18
作者
Hu, Cheng-Cheng [1 ]
Yang, Yi-You [2 ]
机构
[1] Providence Univ, Dept Finance, Taichung 43301, Taiwan
[2] Aletheia Univ, Dept Math, Taipei 25103, Taiwan
来源
SERIES-JOURNAL OF THE SPANISH ECONOMIC ASSOCIATION | 2010年 / 1卷 / 04期
关键词
Externalities; Marginal contributions; Shapley value;
D O I
10.1007/s13209-009-0004-9
中图分类号
F [经济];
学科分类号
02 ;
摘要
An extension of the Shapley value for games in partition function form is proposed in the paper. We introduce a version of the marginal contributions for environments with externalities. The dummy property related to it is defined. We adapt the system of axioms provided by Shapley (A value for n-Person games. In: Kuhn H, Tucker A (eds) Contributions to the theory of games II. Princeton University Press, Princeton, pp 307-317, 1953) to characterize our value. In addition, we discuss a relationship between the alpha-Shapley values proposed by Fujinaka (On the marginality principle in partition function form games. Mimeo, Graduate School of Economics, Kobe University, Japan, 2004) and the values constructed through the average approach provided by Macho-Stadler et al. (J Econ Theory 135:339-356, 2007).
引用
收藏
页码:475 / 487
页数:13
相关论文
共 12 条
[1]   AN AXIOM SYSTEM FOR A VALUE FOR GAMES IN PARTITION FUNCTION FORM [J].
Albizuri, M. J. ;
Arin, J. ;
Rubio, J. .
INTERNATIONAL GAME THEORY REVIEW, 2005, 7 (01) :63-72
[2]  
BOLGER EM, 2008, ECONOMETRICA, V76, P1413
[3]  
DO KHP, 2007, GAME THEORY, V9, P353
[4]  
Dutta B., 2008, EXTERNALITIES POTENT
[5]  
FUJINAKA Y, 2004, MARGINALITY PRINCIPL
[6]   Sharing the surplus:: An extension of the Shapley value for environments with externalities [J].
Macho-Stadler, Ines ;
Perez-Castrillo, David ;
Wettstein, David .
JOURNAL OF ECONOMIC THEORY, 2007, 135 (01) :339-356
[7]   The extended and generalized Shapley value: Simultaneous consideration of coalitional externalities and coalitional structure [J].
McQuillin, Ben .
JOURNAL OF ECONOMIC THEORY, 2009, 144 (02) :696-721
[8]  
Myerson R. B., 1977, International Journal of Game Theory, V6, P23, DOI 10.1007/BF01770871
[9]  
POTTER A, 2000, PARTITION FUNCTION F
[10]  
Shapley L.S., 1953, Contributions to the Theory of Games, DOI [DOI 10.1515/9781400881970-018, 10.1515/9781400881970-018]