Group rings whose symmetric units are nilpotent

被引:7
作者
Lee, Gregory T. [1 ]
Milies, Cesar Polcino
Sehgal, Sudarshan K.
机构
[1] Lakehead Univ, Dept Math Sci, Thunder Bay, ON P7B 5E1, Canada
[2] Univ Sao Paulo, Inst Matemat & Estatist, BR-05315970 Sao Paulo, Brazil
[3] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会; 巴西圣保罗研究基金会;
关键词
D O I
10.1515/JGT.2007.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an infinite field of characteristic different from 2, and G a group containing elements of infinite order. We classify the groups G such that the symmetric units of KG satisfy the identity (x(1), x(2), . . . , x(n)) = 1, for some n.
引用
收藏
页码:685 / 701
页数:17
相关论文
共 15 条
[1]   GROUP IDENTITIES ON UNITS OF RINGS [J].
GIAMBRUNO, A ;
JESPERS, E ;
VALENTI, A .
ARCHIV DER MATHEMATIK, 1994, 63 (04) :291-296
[2]   Group algebras whose units satisfy a group identity [J].
Giambruno, A ;
Sehgal, S ;
Valenti, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (03) :629-634
[3]   Group identities on units of group algebras [J].
Giambruno, A ;
Sehgal, SK ;
Valenti, A .
JOURNAL OF ALGEBRA, 2000, 226 (01) :488-504
[4]   LIE NILPOTENCY OF GROUP-RINGS [J].
GIAMBRUNO, A ;
SEHGAL, SK .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (11) :4253-4261
[5]   Symmetric units and group identities [J].
Giambruno, A ;
Sehgal, SK ;
Valenti, A .
MANUSCRIPTA MATHEMATICA, 1998, 96 (04) :443-461
[6]   Group rings whose symmetric elements are Lie nilpotent [J].
Lee, GT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (11) :3153-3159
[7]   Nilpotent symmetric units in group rings [J].
Lee, GT .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (02) :581-608
[8]  
Liu CH, 1999, P AM MATH SOC, V127, P337, DOI 10.1090/S0002-9939-99-04684-5
[9]   Group algebras with units satisfying a group identity [J].
Liu, CH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) :327-336
[10]  
Passman D. S., 1977, Pure and Applied Mathematics