Morphological engineering of self-assembled nanostructures at nanoscale on faceted GaAs nanowires by droplet epitaxy

被引:44
作者
Zha, Guo-Wei [1 ,2 ]
Zhang, Li-Chun [1 ,2 ]
Yu, Ying [1 ,2 ]
Xu, Jian-Xing [1 ,2 ]
Wei, Si-Hang [1 ,2 ]
Shang, Xiang-Jun [1 ,2 ]
Ni, Hai-Qiao [1 ,2 ]
Niu, Zhi-Chuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei, Anhui 230026, Peoples R China
来源
NANOSCALE RESEARCH LETTERS | 2015年 / 10卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Droplet epitaxy; Nanostructures; Morphology; Nanowires; QUANTUM DOTS; HOLED NANOSTRUCTURES; GROWTH; HETEROSTRUCTURES; PHOTONICS; SYSTEM;
D O I
10.1186/s11671-014-0717-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fabrication of advanced artificial nanomaterials is a long-term pursuit to fulfill the promises of nanomaterials and it is of utter importance to manipulate materials at nanoscale to meet urgent demands of nanostructures with designed properties. Herein, we demonstrate the morphological tailoring of self-assembled nanostructures on faceted GaAs nanowires (NWs). The NWs are deposited on different kinds of substrates. Triangular and hexagonal prism morphologies are obtained, and their corresponding {110} sidewalls act as platforms for the nucleation of gallium droplets (GDs). We demonstrate that the morphologies of the nanostructures depend not only on the annealing conditions but also on the morphologies of the NWs' sidewalls. Here, we achieve morphological engineering in the form of novel quantum dots (QDs), 'square' quantum rings (QRs), 'rectangular' QRs, 3D QRs, crescent-shaped QRs, and nano-antidots. The evolution mechanisms for the peculiar morphologies of both NWs and nanostructures are modeled and discussed in detail. This work shows the potential of combining nano-structural engineering with NWs to achieve multifunctional properties and applications.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 34 条
[1]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[2]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[3]   The morphology of axial and branched nanowire heterostructures [J].
Dick, Kimberly A. ;
Kodambaka, Suneel ;
Reuter, Mark C. ;
Deppert, Knut ;
Samuelson, Lars ;
Seifert, Werner ;
Wallenberg, L. Reine ;
Ross, Frances M. .
NANO LETTERS, 2007, 7 (06) :1817-1822
[4]   Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires [J].
Fontcuberta i Morral, A. ;
Colombo, C. ;
Abstreiter, G. ;
Arbiol, J. ;
Morante, J. R. .
APPLIED PHYSICS LETTERS, 2008, 92 (06)
[5]   Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires [J].
Fontcuberta i Morral, Anna ;
Spirkoska, Dance ;
Arbiol, Jordi ;
Heigoldt, Matthias ;
Morante, Joan Ranion ;
Abstreiter, Gerhard .
SMALL, 2008, 4 (07) :899-903
[6]  
Heiss M, 2013, NAT MATER, V12, P439, DOI [10.1038/NMAT3557, 10.1038/nmat3557]
[7]   Scaling of the structural characteristics of nanoholes created by local droplet etching [J].
Heyn, Ch. ;
Schnuell, S. ;
Hansen, W. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (02)
[8]   Optical characteristics of GaAs nanowire solar cells [J].
Hu, Y. ;
LaPierre, R. R. ;
Li, M. ;
Chen, K. ;
He, J. -J. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (10)
[9]   Complex quantum ring structures formed by droplet epitaxy [J].
Huang, Shesong ;
Niu, Zhichuan ;
Fang, Zhidan ;
Ni, Haiqiao ;
Gong, Zheng ;
Xia, Jianbai .
APPLIED PHYSICS LETTERS, 2006, 89 (03)
[10]   Low and anisotropic barrier energy for adatom migration on a GaAs (110) surface studied by first-principles calculations [J].
Ishii, A ;
Aisaka, T ;
Oh, JW ;
Yoshita, M ;
Akiyama, H .
APPLIED PHYSICS LETTERS, 2003, 83 (20) :4187-4189