On the Stability of a General Mixed Additive-Cubic Functional Equation in Random Normed Spaces

被引:15
作者
Xu, Tian Zhou [1 ]
Rassias, John Michael [2 ]
Xu, Wan Xin [3 ]
机构
[1] Beijing Inst Technol, Sch Sci, Dept Math, Beijing 100081, Peoples R China
[2] Univ Athens, Sect Math & Informat, Pedag Dept EE, Athens 15342, Greece
[3] Univ Elect Sci & Technol China, Sch Comp & Informat Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
HYERS-ULAM STABILITY;
D O I
10.1155/2010/328473
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the generalized Hyers-Ulam stability of the following additive-cubic equation f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x) in the setting of random normed spaces.
引用
收藏
页数:16
相关论文
共 33 条
[1]  
[Anonymous], INT J PHYS IN PRESS
[2]   On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces [J].
Baktash, E. ;
Cho, Y. J. ;
Jalili, M. ;
Saadati, R. ;
Vaezpour, S. M. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
[3]   Hyers-ulam stability for linear equations of higher orders [J].
Brzdek, J. ;
Popa, D. ;
Xu, B. .
ACTA MATHEMATICA HUNGARICA, 2008, 120 (1-2) :1-8
[4]  
BRZDEK J, J INEQUALITIES APPL
[5]  
BRZDEK J, 2009, AUSTR J MATH ANAL AP, V6, P10
[6]   A note on stability of the general linear equation [J].
Brzdek, Janusz ;
Pietrzyk, Andrzej .
AEQUATIONES MATHEMATICAE, 2008, 75 (03) :267-270
[7]   Fixed Points and Stability for Functional Equations in Probabilistic Metric and Random Normed Spaces [J].
Cadariu, Liviu ;
Radu, Viorel .
FIXED POINT THEORY AND APPLICATIONS, 2009,
[8]  
ESHAGHI MG, 2009, EUROPEAN J PURE APPL, V2, P494
[9]   On the Hyers-Ulam stability of functional equations connected with additive and quadratic mappings [J].
Fechner, Wlodzimierz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :774-786
[10]   Elementary remarks on Ulam-Hyers stability of linear functional equations [J].
Forti, Gian-Luigi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :109-118