LEVENBERG-MARQUARDT METHOD FOR ABSOLUTE VALUE EQUATION ASSOCIATED WITH SECOND-ORDER CONE

被引:6
|
作者
Miao, Xin-He [1 ]
Yao, Kai [1 ]
Yang, Ching-Yu [2 ]
Chen, Jein-Shan [2 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300072, Peoples R China
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
来源
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION | 2022年 / 12卷 / 01期
基金
中国国家自然科学基金;
关键词
Second-order cone; Absolute value equations; Levenberg-Marquardt algorithm; Armijo line search; GENERALIZED NEWTON METHOD; COMPLEMENTARITY; ALGORITHM; CONVERGENCE; CONVEX;
D O I
10.3934/naco.2021050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggest the Levenberg-Marquardt method with Armijo line search for solving absolute value equations associated with the second-order cone (SOCAVE for short), which is a generalization of the standard absolute value equation frequently discussed in the literature during the past decade. We analyze the convergence of the proposed algorithm. For numerical reports, we not only show the efficiency of the proposed method, but also present numerical comparison with smoothing Newton method. It indicates that the proposed algorithm could also be a good choice for solving the SOCAVE.
引用
收藏
页码:47 / 61
页数:15
相关论文
共 50 条
  • [41] Improved convergence results of an efficient Levenberg-Marquardt method for nonlinear equations
    Zeng, Meilan
    Zhou, Guanghui
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (06) : 3655 - 3671
  • [42] Levenberg-Marquardt method in Banach spaces with general convex regularization terms
    Jin, Qinian
    Yang, Hongqi
    NUMERISCHE MATHEMATIK, 2016, 133 (04) : 655 - 684
  • [43] Improving Power Flow Convergence by Newton Raphson with a Levenberg-Marquardt Method
    Lagace, P. J.
    Vuong, A. H.
    Kamwa, I.
    2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 4369 - +
  • [44] On the multi-point Levenberg-Marquardt method for singular nonlinear equations
    Zhao, Xin
    Fan, Jinyan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (01) : 203 - 223
  • [45] Identification of piecewise constant Robin coefficient for the Stokes problem using the Levenberg-Marquardt method
    Khayat, Faten
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03)
  • [46] Local convergence of the Levenberg-Marquardt method under Holder metric subregularity
    Ahookhosh, Masoud
    Aragon Artacho, Francisco J.
    Fleming, Ronan M. T.
    Vuong, Phan T.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2771 - 2806
  • [47] A generalized Newton method for absolute value equations associated with second order cones
    Hu, Sheng-Long
    Huang, Zheng-Hai
    Zhang, Qiong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) : 1490 - 1501
  • [48] A variant of the Levenberg-Marquardt method with adaptive parameters for systems of nonlinear equations
    Zheng, Lin
    Chen, Liang
    Ma, Yanfang
    AIMS MATHEMATICS, 2022, 7 (01): : 1241 - 1256
  • [49] Fitting Nonlinear Equations with the Levenberg-Marquardt Method on Google Earth Engine
    Wang, Shujian
    Xu, Ming
    Zhang, Xunhe
    Wang, Yuting
    REMOTE SENSING, 2022, 14 (09)
  • [50] A Stochastic Levenberg-Marquardt Method Using Random Models with Complexity Results
    Bergou, El Houcine
    Diouane, Youssef
    Kungurtsev, Vyacheslav
    Royer, Clement W.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01) : 507 - 536