Learning to synthesise the ageing brain without longitudinal data

被引:31
作者
Xia, Tian [1 ]
Chartsias, Agisilaos [1 ]
Wang, Chengjia [2 ]
Tsaftaris, Sotirios A. [1 ,3 ]
机构
[1] Univ Edinburgh, Sch Engn, Inst Digital Commun, West Mains Rd, Edinburgh EH9 3FB, Midlothian, Scotland
[2] BHF Ctr Cardiovasc Sci, Edinburgh EH16 4TJ, Midlothian, Scotland
[3] Alan Turing Inst, London NW1 2DB, England
基金
英国工程与自然科学研究理事会;
关键词
Brain ageing; Generative adversarial network; Neurodegenerative disease; Magnetic resonance imaging (MRI); ALZHEIMERS-DISEASE; MR-IMAGES; AGE; ATROPHY; MATTER; MODEL; HALLMARKS; VOLUMES; ATLAS; GRAY;
D O I
10.1016/j.media.2021.102169
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
How will my face look when I get older? Or, for a more challenging question: How will my brain look when I get older? To answer this question one must devise (and learn from data) a multivariate auto regressive function which given an image and a desired target age generates an output image. While collecting data for faces may be easier, collecting longitudinal brain data is not trivial. We propose a deep learning-based method that learns to simulate subject-specific brain ageing trajectories without relying on longitudinal data. Our method synthesises images conditioned on two factors: age (a continuous variable), and status of Alzheimer's Disease (AD, an ordinal variable). With an adversarial formulation we learn the joint distribution of brain appearance, age and AD status, and define reconstruction losses to address the challenging problem of preserving subject identity. We compare with several benchmarks using two widely used datasets. We evaluate the quality and realism of synthesised images using ground truth longitudinal data and a pre-trained age predictor. We show that, despite the use of cross-sectional data, our model learns patterns of gray matter atrophy in the middle temporal gyrus in patients with AD. To demonstrate generalisation ability, we train on one dataset and evaluate predictions on the other. In conclusion, our model shows an ability to separate age, disease influence and anatomy using only 2D cross-sectional data that should be useful in large studies into neurodegenerative disease, that aim to combine several data sources. To facilitate such future studies by the community at large our code is made available at https://github.com/xiat0616/BrainAgeing . (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 72 条
[1]  
[Anonymous], 2017, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2017.244
[2]  
[Anonymous], 2017, Wasserstein Generative Adversarial Networks
[3]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[4]   Visual Feature Attribution using Wasserstein GANs [J].
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Tezcan, Kerem Can ;
Ang, Jia Xi ;
Konukoglu, Ender .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8309-8319
[5]   Modelling the Progression of Alzheimer's Disease in MRI Using Generative Adversarial Networks [J].
Bowles, Christopher ;
Gunn, Roger ;
Hammers, Alexander ;
Rueckert, Daniel .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[6]   Phenomenological model of diffuse global and regional atrophy using finite-element methods [J].
Camara, Oscar ;
Schweiger, Martin ;
Scahill, Rachael I. ;
Crum, William R. ;
Sneller, Beatrix I. ;
Schnabel, Julia A. ;
Ridgway, Gerard R. ;
Cash, David M. ;
Hill, Derek L. G. ;
Fox, Nick C. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (11) :1417-1430
[7]   Disentangled representation learning in cardiac image analysis [J].
Chartsias, Agisilaos ;
Joyce, Thomas ;
Papanastasiou, Giorgos ;
Semple, Scott ;
Williams, Michelle ;
Newby, David E. ;
Dharmakumar, Rohan ;
Tsaftaris, Sotirios A. .
MEDICAL IMAGE ANALYSIS, 2019, 58
[8]  
Chollet F., 2015, KERAS 20 COMPUTER SO
[9]   Brain age predicts mortality [J].
Cole, J. H. ;
Ritchie, S. J. ;
Bastin, M. E. ;
Hernandez, M. C. Valdes ;
Maniega, S. Munoz ;
Royle, N. ;
Corley, J. ;
Pattie, A. ;
Harris, S. E. ;
Zhang, Q. ;
Wray, N. R. ;
Redmond, P. ;
Marioni, R. E. ;
Starr, J. M. ;
Cox, S. R. ;
Wardlaw, J. M. ;
Sharp, D. J. ;
Deary, I. J. .
MOLECULAR PSYCHIATRY, 2018, 23 (05) :1385-1392
[10]   Brain age and other bodily 'ages': implications for neuropsychiatry [J].
Cole, James H. ;
Marioni, Riccardo E. ;
Harris, Sarah E. ;
Deary, Ian J. .
MOLECULAR PSYCHIATRY, 2019, 24 (02) :266-281