The Lotka-Volterra canonical format

被引:18
作者
Rocha, TA
Gléria, IM
Figueiredo, A
Brenig, L
机构
[1] Univ Fed Alagoas, Dept Fis, BR-57072970 Maceio, AL, Brazil
[2] Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil
[3] Free Univ Brussels, Serv Phys Stat Plasme & Opt Nonlineaire, B-1050 Brussels, Belgium
关键词
Lotka-Volterra; population dynamics; stability; first integrals;
D O I
10.1016/j.ecolmodel.2004.07.023
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Most of the dynamical systems used in models of mathematical biology can be related to the simplest known model: the Lotka-Volterra (LV) system. Brenig (1988) showed that no matter the degree of nonlinearity of the considered model is often possible to relate it to a LV by a suitable coordinate transformation plus an embedding (Brenig, L., 1988. Complete factorization and analytic solutions of generalized Lotka-Volterra equations. Phys. Lett. A 133, 378-382). The LV system has then a status of canonical format. In this paper, we show how analytical properties of the original system can be studied from the dynamics of its associated LV. Our methodology is exemplified through the analysis of the stability of the interior fixed points and determination of conserved quantities. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 21 条
[1]   RELATIONSHIP BETWEEN THE LOGISTIC EQUATION AND THE LOTKA-VOLTERRA MODELS [J].
BLANCO, JM .
ECOLOGICAL MODELLING, 1993, 66 (3-4) :301-303
[3]   Algebraic structures and invariant manifolds of differential systems [J].
Figueiredo, A ;
Rocha, TMR ;
Brenig, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) :2929-2946
[4]   Boundedness of solutions and Lyapunov functions in quasi-polynomial systems [J].
Figueiredo, A ;
Gléria, IM ;
Rocha, TM .
PHYSICS LETTERS A, 2000, 268 (4-6) :335-341
[5]   GLOBAL STABILITY AND PREDATOR DYNAMICS IN A MODEL OF PREY DISPERSAL IN A PATCHY ENVIRONMENT [J].
FREEDMAN, HI ;
TAKEUCHI, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :993-1002
[6]   A numerical method for the stability analysis of quasi-polynomial vector fields [J].
Gléria, IM ;
Figueiredo, A ;
Rocha, TM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (01) :329-342
[7]  
GUASE GF, 1938, STRUGGLE EXISTENCE
[8]   Algebraic recasting of nonlinear systems of ODEs into universal formats [J].
Hernandez-Bermejo, B ;
Fairen, V ;
Brenig, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (10) :2415-2430
[9]   Lotka-volterra representation of general nonlinear systems [J].
HernandezBermejo, B ;
Fairen, V .
MATHEMATICAL BIOSCIENCES, 1997, 140 (01) :1-32
[10]   The LES population model: essentials and relationship to the Lotka-Volterra model [J].
Huang, X ;
Zu, YG .
ECOLOGICAL MODELLING, 2001, 143 (03) :215-225